Modeling Natural Hydrologic Systems with VELMA (Visualizing Ecosystems for Land Management Assessments)

♥EPA

Bob McKane

U.S. Environmental Protection Agency Western Ecology Division Corvallis, Oregon mckane.bob@epa.gov

> Evergreen State College May 23, 2013

Outline

- 1. What is an ecosystem service?
- 2. Modeling ecosystem services and tradeoffs for alternative land use decisions
- 3. Decision support for assisting communities seeking sustainable futures
- 4. Importance of computer science in environmental decision making

Ecosystem services are the benefits people obtain from natural and managed ecosystems

Four categories:

SEPA

- 1. Provisioning services, such as production of food, fiber & water
- 2. Regulating services, such as the control of climate & disease
- 3. Cultural services, such as spiritual and recreational benefits

(Spinge)

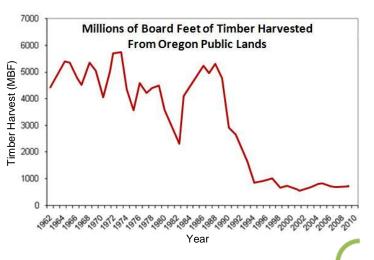
4. Supporting services, such as cycling of water & nutrients

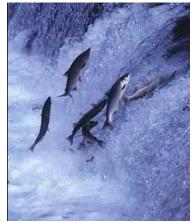
Cran C

(June (C)

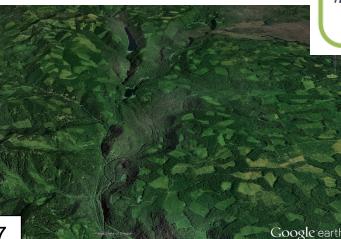
Millennium Ecosystem Assessment 2005

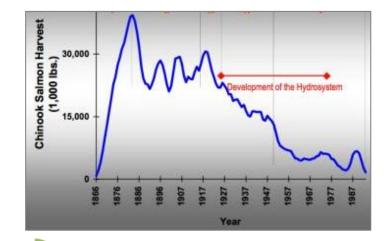
The Pacific Northwest is a region of diverse and highly valued natural resources that provide a variety of ecosystem services vital to society's well-being





Can these and other services be managed sustainably?


To what extent does emphasizing one service result in trade-offs with others?



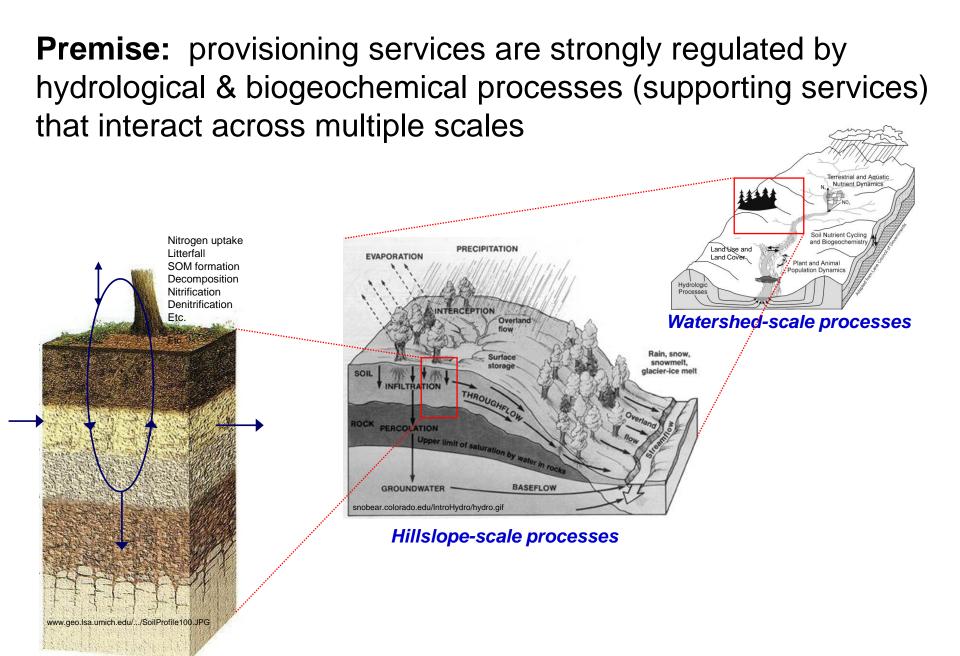
"The historical pattern of resource use in the PNW has often been one of boom and bust, with unsustainable management practices leading to severe downturns in major industries, such as the once thriving salmon fishery and forest products industries... Economic and sociological impacts have been particularly damaging to rural communities."

Most ecosystem services are declining globally

Service	Sub-category	Status	Notes
Provisioning Services			
Food	crops livestock capture fisheries aquaculture wild foods		substantial production increase substantial production increase declining production due to overharvest substantial production increase declining production
Fiber	timber cotton, hemp, silk wood fuel	+/- +/- ▼	forest loss in some regions, growth in others declining production of some fibers, growth in others declining production
Genetic resources		▼	lost through extinction and crop genetic resource loss
Biochemicals, natural medicines, pharmaceuticals		•	lost through extinction, overharvest
Fresh water		•	unsustainable use for drinking, industry, and irrigation; amount of hydro energy unchanged, but dams increase ability to use that energy
Regulating Services			
Air quality regulation		▼	decline in ability of atmosphere to cleanse itself
Climate regulation	global regional and local	▲ ▼	net source of carbon sequestration since mid-century preponderance of negative impacts
Water regulation		+/-	varies depending on ecosystem change and location
Erosion regulation		▼	increased soil degradation
Water purification and waste treatment		•	declining water quality
Disease regulation		+/-	varies depending on ecosystem change
Pest regulation		▼	natural control degraded through pesticide use
Pollination		▼a	apparent global decline in abundance of pollinators
Natural hazard regulation		▼	loss of natural buffers (wetlands, mangroves)

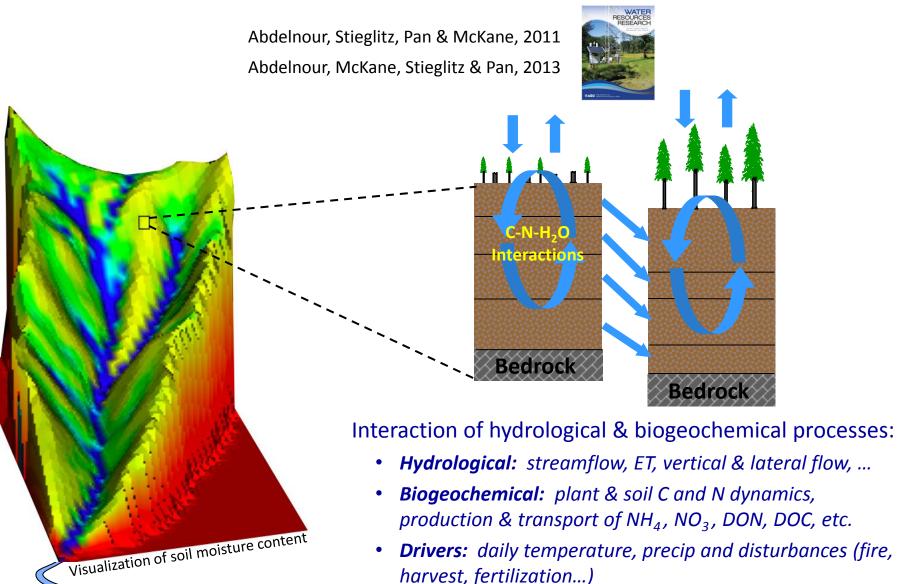
The value of the world's ecosystem services and natural capital

Robert Costanza*†, Ralph d'Arge‡, Rudolf de Groot§, Stephen Farber||, Monica Grasso†, Bruce Hannon¶, Karin Limburg#^{*}, Shahid Naeem**, Robert V. O'Neill††, Jose Paruelo‡‡, Robert G. Raskin§§, Paul Sutton|||| & Marjan van den Belt¶¶

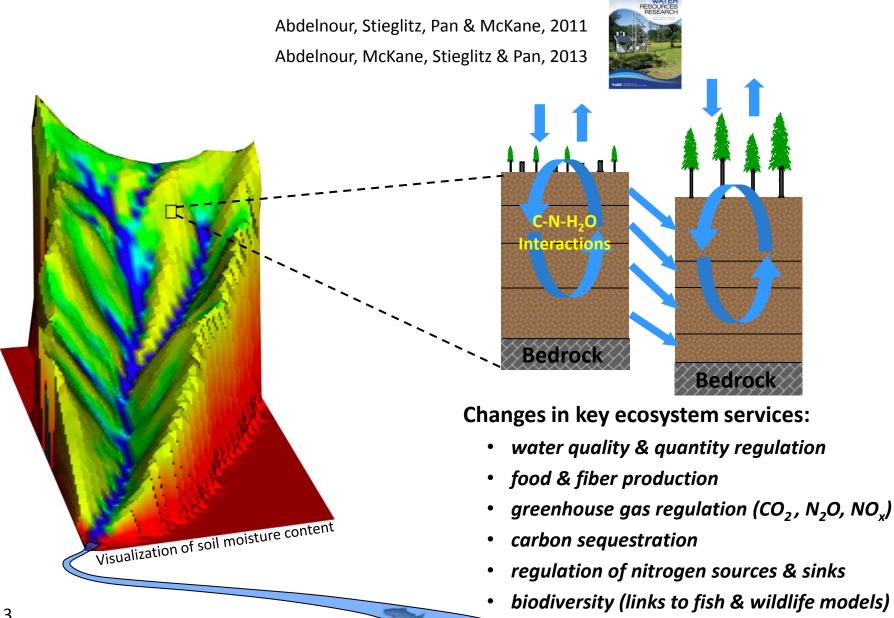

NATURE | VOL 387 | 15 MAY 1997

- The global value of ecosystem services is estimated to be about <u>\$33 trillion</u> per year.
- Global gross national product is about <u>\$18 trillion</u> per year.

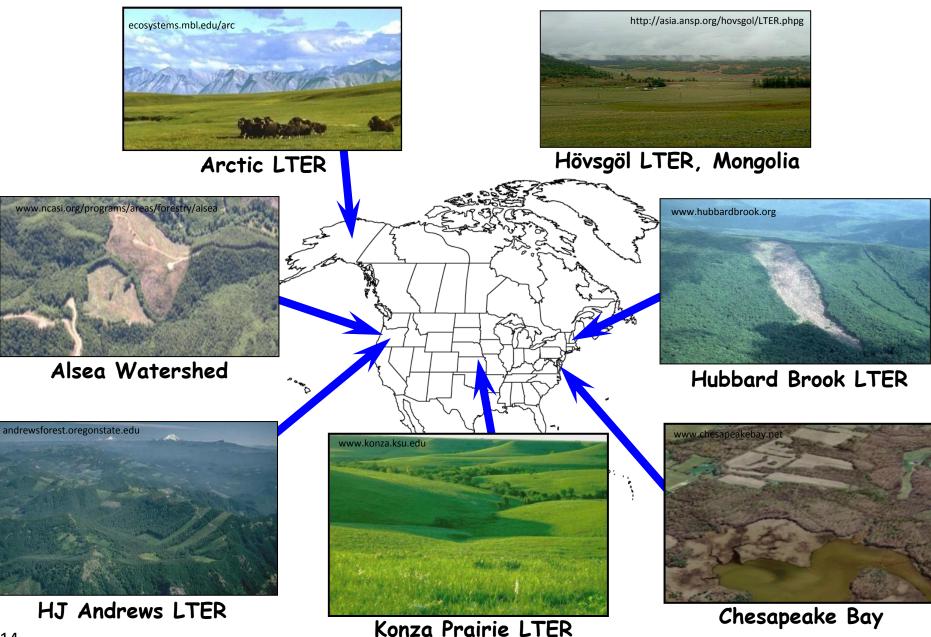
Problem Statement & Research Objective

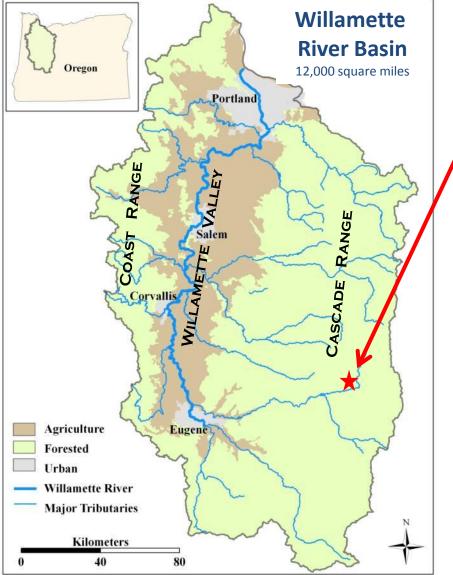

- Communities need comprehensive approaches for meeting present needs without compromising the ability of society and the environment to meet the economic, social and environmental needs of future generations.
- Our goal is to produce & demonstrate <u>decision support tools</u> for quantifying the production and value of ecosystem goods <u>and services</u> for achieving sustainable & healthy communities.

SEPA

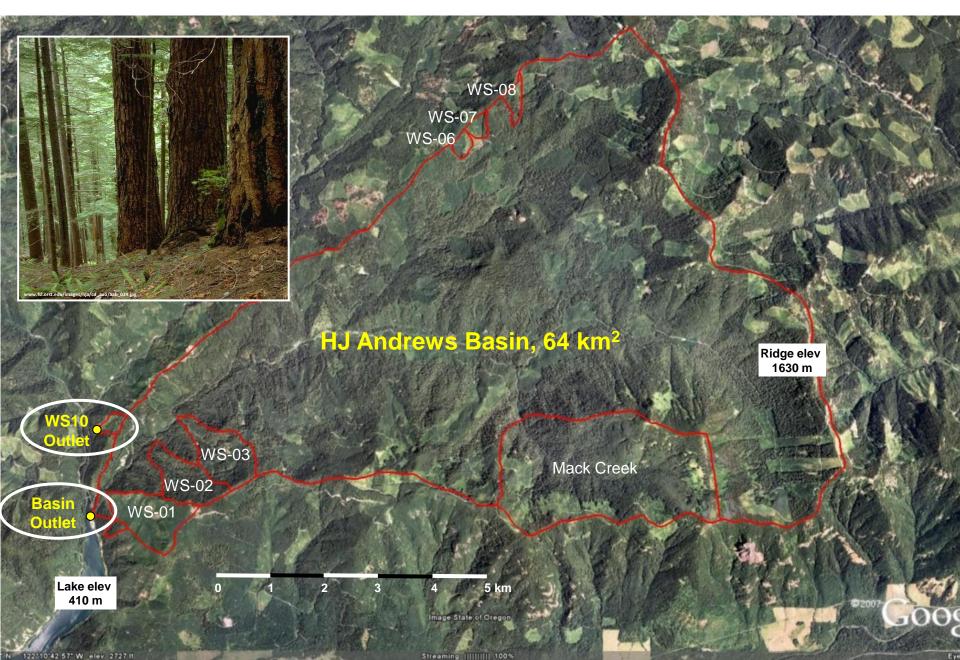


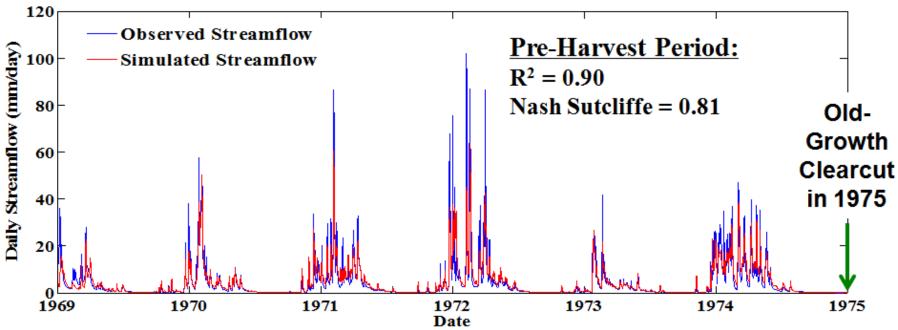
Plot-scale processes


VELMA Eco-Hydrological Model

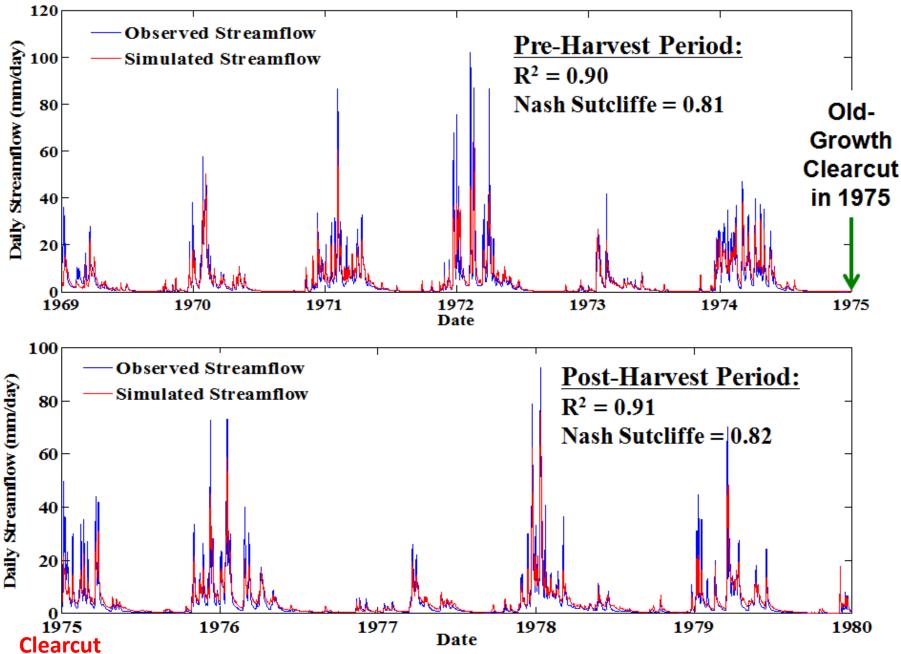

VELMA Eco-Hydrological Model

Broad Applicability

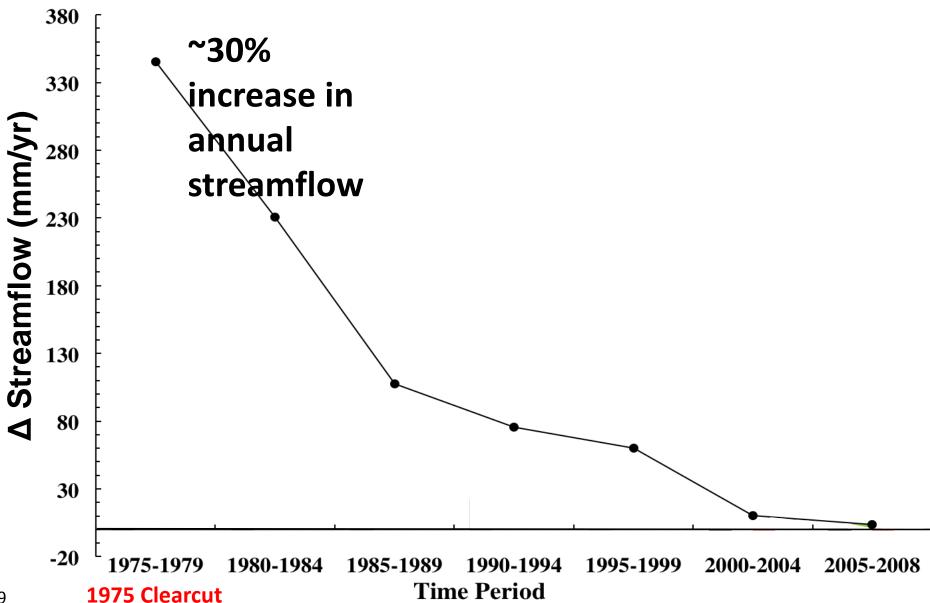

VELMA demonstration of forest harvest effects on multiple ecosystem services


HJ Andrews Long Term Ecological Research (LTER) site

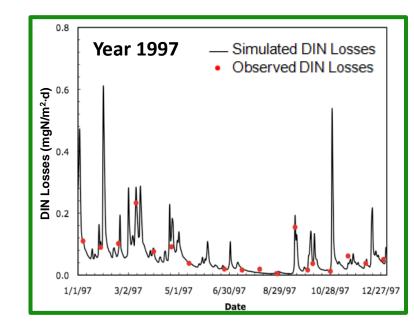
- Long-term monitoring data since 1950s:
 - Climate (temperature, precipitation...)
 - Stream flow & chemistry
 - Forest biomass and productivity
 - Disturbance history
- 40+ years of experimental data describing hydrological & ecological responses to harvest and climate.

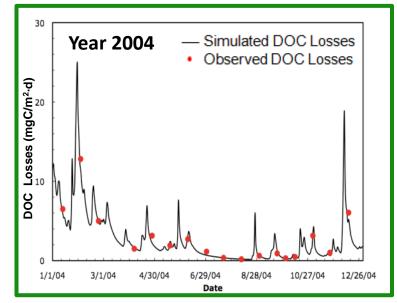

HJ Andrews LTER site

WS10 streamflow validation

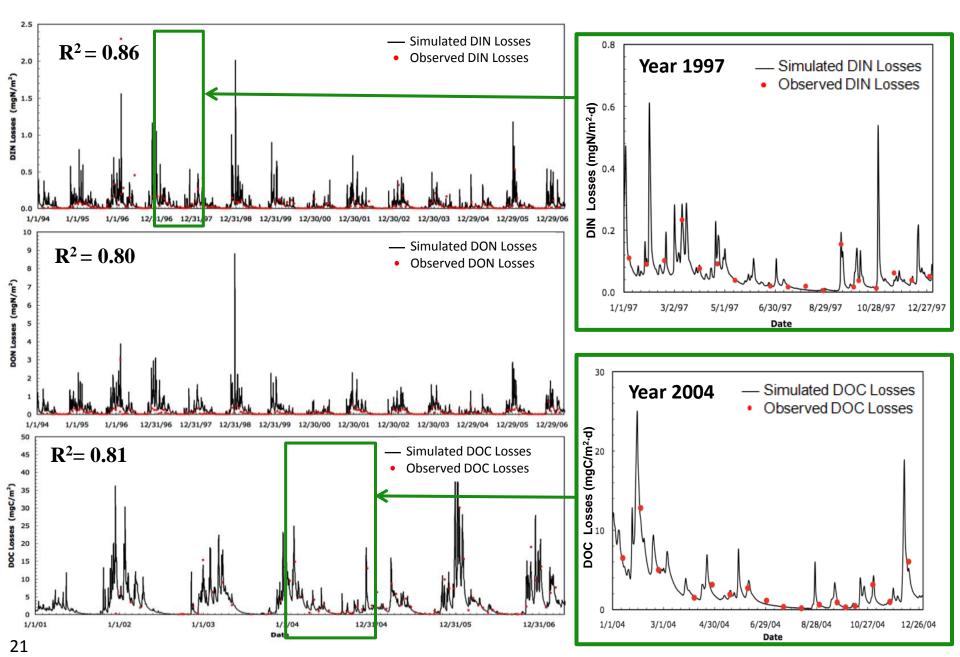


WS10 streamflow validation

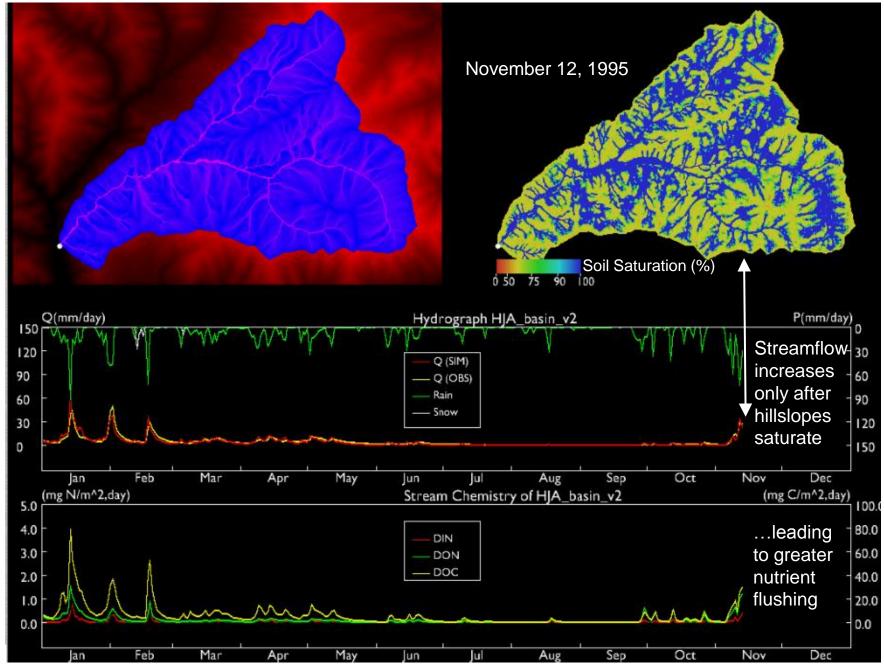



18

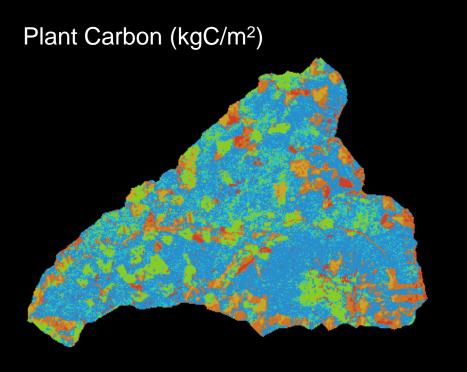
WS10: change in streamflow due to clearcutting



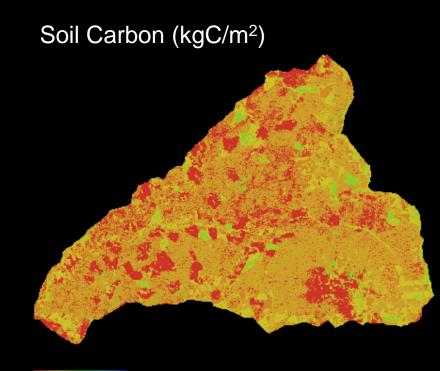
WS10 stream chemistry validation


WS10 stream chemistry validation

Hydrologic validation across multiple spatial scales



Changes in hillslope connectivity and flushing

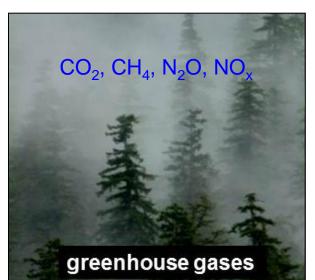


Simulated Carbon Stocks

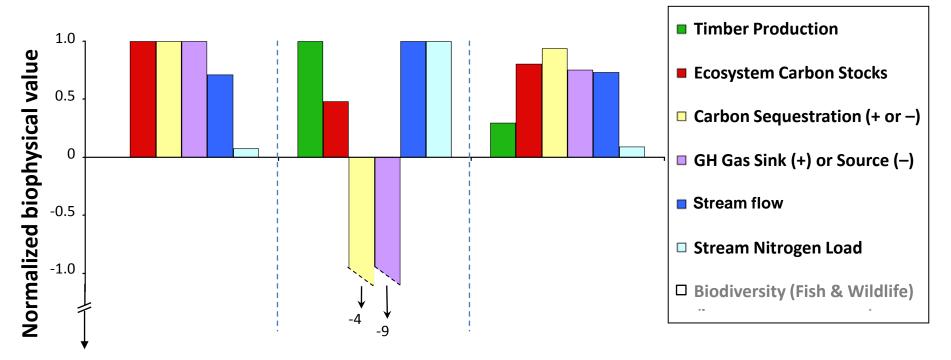
Present-day land cover, 64 km² basin

Ecosystem services demo: three alternative management scenarios for 64 km² HJ Andrews Basin

No Harvest (maintain pre-European old-growth landscape)

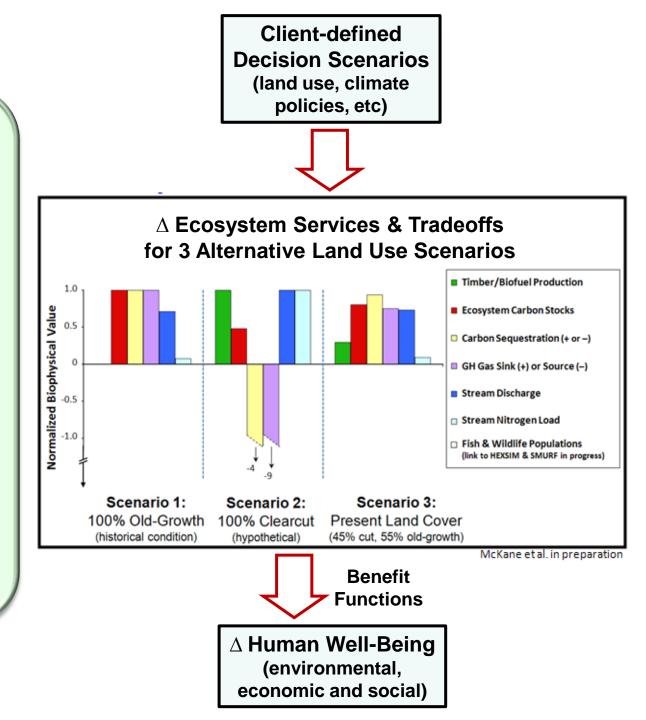

100% Clearcut (hypothetical) Present-Day Land Cover (~45% harvested, 55% old-growth) **Goal:** simulate trade-offs among multiple ecosystem services in response to alternative management decisions

diversity



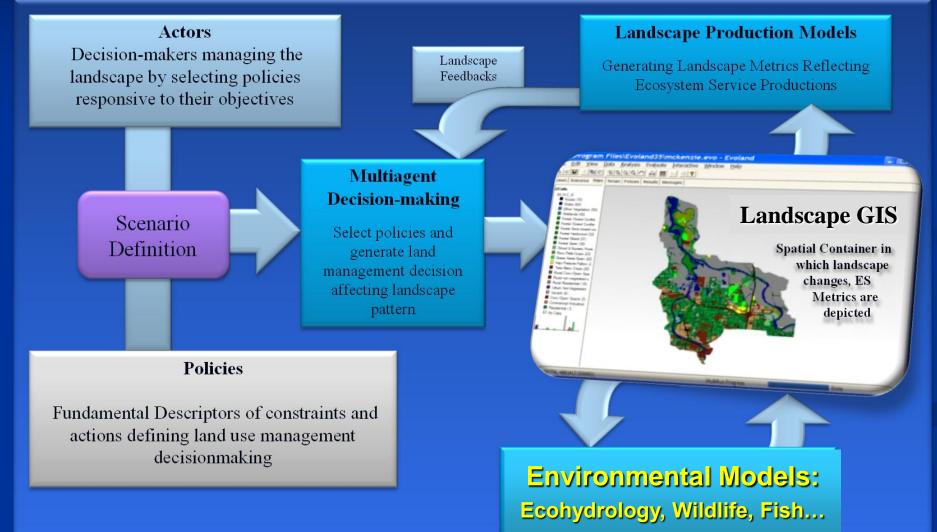
Simulated ecosystem service trade-offs for three alternative forest management scenarios

64 km² HJ Andrews Basin



Scenario 1: No Harvest (maintain pre-European old-growth landscape)

Scenario 2: 100% Clearcut (results for 1st five yr after hypothetical cut) Scenario 3: Present Land Cover (45% clear cut, 55% old-growth)


Incorporate VELMA in decision support framework that can

- (1) help land managers
 & policymakers
 define alternative
 future decision
 scenarios
- (2) Identify sustainable land use practices that balance environmental, economic and social criteria

ENVISION Decision Support Tool

http://envision.bioe.orst.edu/ John Bolte, Oregon State University

Stakeholder Engagement – Early and Often

VELMA Modeling Team

Biogeochemistry: Bob McKane, EPA

Hydrology:

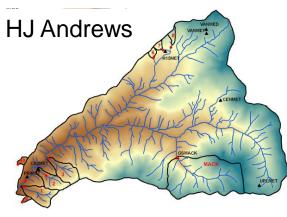
Marc Stieglitz, Georgia Tech Alex Abdelnour, Georgia Tech (McKinsey & Company) Feifei Pan, University of North Texas

Economics: Mike Papenfus, EPA

Computer Science: Allen Brookes, EPA Kevin Djang, CSC

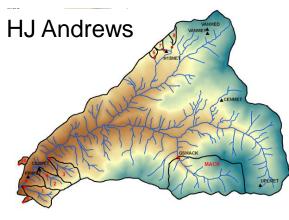
VELMA Modeling Team

Biogeochemistry: Bob McKane, EPA

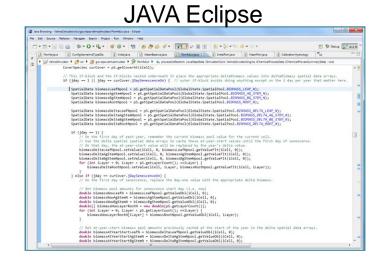

Hydrology:

Marc Stieglitz, Georgia Tech Alex Abdelnour, Georgia Tech (McKinsey & Company) Feifei Pan, University of North Texas

Economics: Mike Papenfus, EPA


Computer Science: Allen Brookes, EPA Kevin Djang, CSC

1) Computational efficiency



- 64 km² = 71,000 VELMA pixels (30x30 meter)
- ~100 differential equations solved per pixel per simulated day
- 71,000 X 100 = 7.1 million equations per day
- ~2.6 billion equations per simulated year

1) Computational efficiency

- 64 km² = 71,000 VELMA pixels (30x30 meter)
- ~100 differential equations solved per pixel per simulated day
- $71,000 \times 100 = 7.1$ million equations per day
- ~2.6 billion equations per simulated year

VELMA requires <1 hour of real time to simulate 1 year for HJ Andrews

2) Data visualization

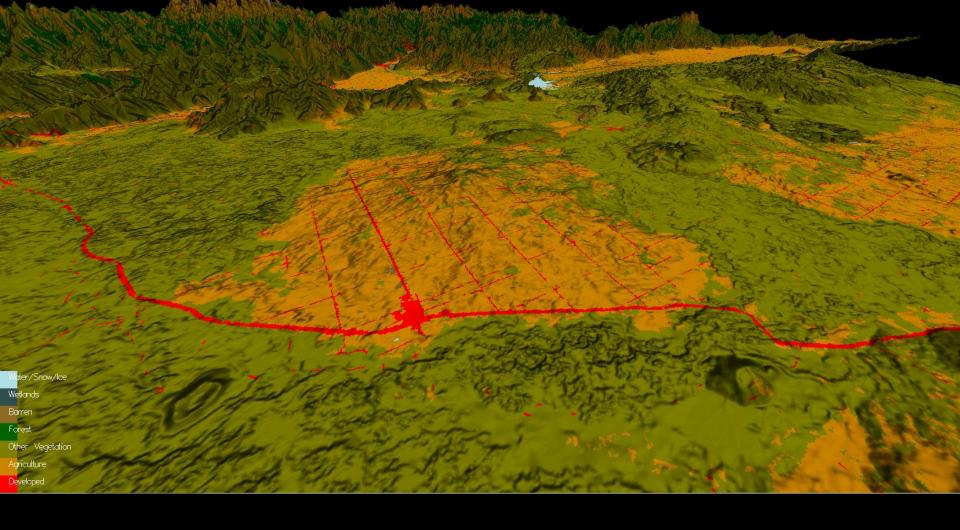
	A	В		C	D	E	F	G	н	1	L	к	L	м	N	0	p	
1	Loop	Step		Year	Day	Variable_ Source_A rea_Deli neated_ Average	Snow(m m/day)	Snow_De pth(mm/ day)			II(mm/da y)_Delin	uface(m m/day)_ Delineat	m/day)_ Delineat ed_Avera	m/day)_ Delineat ed_Avera	Runoff(m m/day)_ Delineat ed_Avera ge_Layer 3	m/day)_ Delineat ed_Avera	Soil_Moi sture_De lineated_ Average_	stur line
2		1	0	1969		1 2.399383	0	0	(16.9	43.57663	(12.19125	17.21689	6.515249	5.253864	0.453	
3		1	1	1969		2 0.226852	0	0		1.75	20.54897		4.726109	8.262293	3.718142	3.615577	0.305483	C
4		1	2	1969		3 1.17284	0	0		9.5	14.78488		2.434733	4.948138	2.701477	3.527697	0.281163	0.3
5		1	3	1969		4 0.561728	0	0		4.55	12.63832		2.288912	3.97059	2.196625	3.620463	0.287111	0.
6		1	4	1969		5 1.795371	0	0		13.85	12.80585	(2.196002	3.497887	2.099342	3.217251	0.282156	0.3
7		1	5	1969		6 1.646296	0	0		12.7	12.59702		2.757072	3.088856	1.956701	3.148093	0.29705	0.3
8		1	6	1969		7 6.222222	0	0		48	21.55315		6.172986	3.871185	2.149772	3.136991	0.300033	0.
9		1	7	1969		8 0.868519	0	0		6.7	15.73111		4.809972	4.561661	2.429174	3.061786	0.348914	0.3
0		1	8	1969		9 4.511111	0	0	(34.8	19.39531		4.52576	4.462542	2.323298	3.572603	0.293503	0.3
1		1	9	1969	- 1	0 4.893518	0	0		37.75	24.51556		7.762081	5.623432	2.729429	3.507103	0.336507	0.3
2		1	10	1969	1	1 2.650926	0	0		20.45	19.80349	0	5.173106	5.709125	2.833026	3.437311	0.332334	0.3
13		1	11	1969	1	2 3.85	0	0		29.7	21.41637		5.777509	5.392439	2.656932	3.739487	0.316032	0.3
14		1	12	1969	1	3 1.516667	0	0		11.7	17.06908	0	4.297192	5.311456	2.664753	3.279009	0.330221	0.3
15		1	13	1969	1	4 0.576852	0	0		4,45	12.93149		2.349329	4.101446	2.260752	3.643112	0.303749	0.3
16		1	14	1969	1	5 1.199074	0	0		9.25	12.31832		2.194399	3.588405	2.134604	3.201838	0.288658	0.3
17		1	15	1969	1	6 2.268518	0	0		17.5	13.3034		2.7025	3.276398	1.98957	3.066417	0.291411	0.3
18		1	16	1969	1	7 1.283333	0	0		9.9	12.4384		2.980535	3.130041	1.939207	3.105286	0.306905	0.3
19		1	17	1969	1	8 0.253086	0	0		2.05	9.966941		1.889585	2.984173	1.878394	2.961703	0.297571	0.3
20		1	18	1969	1	9 0.134877	0	0		1.15	8.277412		1.261796	2.461678	1.733406	2.685657	0.28005	0.
21		1	19	1969	1 2	0 0.310803	0	0	(2.65	7.454482		1.015458	2.069536	1.601306	2.457378	0.269086	0.3
22		1	20	1969	1 2	1 0.445679	0	0	(3.8	7.02201	(0.983594	1.773826	1.476557	2.342355	0.264229	0.3
23		1	21	1969	2	2 0	4.45	4.45	(0 0	6.131962		0.889058	1.657598	1.42109	2.164217	0.264058	(
24		1	22	1969	2	3 0	0	4.45		0 0	5.457619	0	0.662186	1.465509	1.349677	1.980248	0.254	0.
25	4 5 51	1 DailyRest	23 ults) 3	4 0	3.2	7.65	(0 0	4.909106		0.552557	1.269005	1.279951	1.807594	0.246651	0.3

VELMA generates ~1 GB of output for HJ Andrews multi-century simulations...

...very difficult to interpret & communicate results without visualization tools!

2) Data visualization

	A	В	-	C	D	+	E	F	G	н	1	J	К	L	м	N	0	P	
1	Loop	Step	Y	ear	Day	s n		Snow(m m/day)	Snow_De pth(mm/ day)		Rain(mm /day)	II(mm/da y)_Delin	uface(m m/day)_ Delineat	Runoff(m m/day)_ Delineat ed_Avera ge_Layer 1	m/day)_ Delineat ed_Avera	m/day)_ Delineat ed_Avera	m/day)_ Delineat ed_Avera ge_Layer	sture_De lineated_ Average_	stur line
2		1	0	1969		1 :	2.399383	0	0	1	16.9	43.57663		12.19125	17.21689	6.515249	5.253864	0.453	1000
3		1	1	1969			0.226852	0	0			20.54897		4.726109				0.305483	c
4		1	2	1969			1.17284	0	0			14.78488		2.434733	4.948138	2.701477	3.527697	0.281163	0.3
5		1	3	1969		4 1	0.561728	0	0	1	4.55	12.63832	0	2.288912	3.97059	2.196625	3.620463	0.287111	0.
6		1	4	1969		5	1.795371	0	0	9	13.85	12.80585	0	2.196002	3.497887	2.099342	3.217251	0.282156	0.3
7		1	5	1969		6	1.646296	0	0		12.7	12.59702	0	2.757072	3.088856	1.956701	3.148093	0.29705	0.3
8		1	6	1969		7	6.222222	0	0	1	48	21.55315	0	6.172986	3.871185	2.149772	3.136991	0.300033	0.
9		1	7	1969		8	0.868519	0	0		6.7	15.73111	. 0	4.809972	4.561661	2.429174	3.061786	0.348914	0.3
10		1	8	1969		9 .	4.511111	0	0	1	34.8	19.39531	0	4.52576	4.462542	2.323298	3.572603	0.293503	0.3
11		1	9	1969	1	10	4.893518	0	0		37.75	24.51556	0	7.762081	5.623432	2.729429	3.507103	0.336507	0.3
12		1	10	1969	1.1	11 :	2.650926	0	0		20.45	19.80349	0	5.173106	5.709125	2.833026	3.437311	0.332334	0.3
13		1	11	1969		12	3.85	0	0	1	29.7	21.41637	0	5.777509	5.392439	2.656932	3.739487	0.316032	0.3
14		1	12	1969	1	13	1.516667	0	0	1	11.7	17.06908	0	4.297192	5.311456	2.664753	3.279009	0.330221	0.3
15		1	13	1969	3	14	0.576852	0	0	1	4,45	12.93149	0	2.349329	4.101446	2.260752	3.643112	0.303749	0.3
16		1	14	1969		15	1.199074	0	0	1	9.25	12.31832	0	2.194399	3.588405	2.134604	3.201838	0.288658	0.3
17		1	15	1969	1.1	16	2.268518	0	0	1	17.5	13.3034	0	2.7025	3.276398	1.98957	3.066417	0.291411	0.3
18		1	16	1969	1	17	1.283333	0	0				. 0	2.980535	3.130041	1.939207	3.105286	0.306905	0.3
19		1	17	1969		18	0.253086	0	0		.05			1.889585	2.984173	1.878394	2.961703	0.297571	0.3
20		1	18	1969		19	0.134877	0	0		.15	8.277412	0	1.261796	2.461678	1.733406	2.685657	0.28005	0.
21		1	19	1969		20	0.310803	0	0		.65	7.454482	0	1.015458	2.069536	1.601306	2.457378	0.269086	0.3
22		1	20	1969		21 1	0.445679	0	0		3.8	7.02201	0	0.983594	1.773826	1.476557	2.342355	0.264229	0.3
23			21	1969	1 3	22	0	4.45			0	6.131962	0	0.889058	1.657598	1.42109	2.164217	0.264058	C
24		1	22	1969	1	23	0	0	4.45		0	5.457619	0	0.662186	1.465509	1.349677	1.980248	0.254	0.
25		1 ailyResult	23	1969		24	0	3.2	7.65		0	4.909106	0	0.552557	1.269005	1.279951	1.807594	0.246651	0.3


 VELMA generates ~1 GB of output for HJ Andrews multi-century simulations

...very difficult to interpret & communicate results without visualization tools!

- Line charts & bar graphs
- 2D spatial-temporal displays (onthe-fly visualization for calibration)
- 3D spatial-temporal displays (e.g., VISTAS post-simulation visualization)

VISTAS visualization software

Dr. Judy Cushing & collaborators

