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ABSTRACT
We consider a case study using SQL-as-a-Service to support
“instant analysis” of weakly structured relational data at a
multi-investigator science retreat. Here, “weakly structured”
means tabular, rows-and-columns datasets that share some
common context, but that have limited a priori agreement
on file formats, relationships, types, schemas, metadata, or
semantics. In this case study, the data were acquired from
hundreds of distinct locations during a multi-day oceano-
graphic cruise using a variety of physical, biological, and
chemical sensors and assays. Months after the cruise when
preliminary data processing was complete, 40+ researchers
from a variety of disciplines participated in a two-day “data
synthesis workshop.” At this workshop, two computer sci-
entists used a web-based query-as-a-service platform called
SQLShare to perform “SQL stenography”: writing queries in
real time to integrate data, test hypotheses, and populate
visualizations in response to the scientific discussion. In this
“field test” of our technology and approach, we found that
it was not only feasible to support interactive science Q&A
with essentially pure SQL, but that we significantly increased
the value of the “face time” at the meeting: researchers from
different fields were able to validate assumptions and resolve
ambiguity about each others’ fields. As a result, new science
emerged from a meeting that was originally just a planning
meeting. In this paper, we describe the details of this experi-
ment, discuss our major findings, and lay out a new research
agenda for collaborative science database services.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Scientific Databases

General Terms
Design, Experimentation, Human Factors, Management

1. INTRODUCTION
Data analysis is replacing data acquisition as the bottle-
neck to scientific discovery. The challenges associated with

high-volume data have received significant attention [9],
but the challenges related to integrating weakly structured,
high-variety data — hundreds of datasets with hundreds of
columns and no a priori agreement on format or semantics
— are understudied. Even at small scales, our collaborators
report that these situations require them to spend up to 90%
of their time on data handling tasks that have little to do
with the science [5].

We posit that the use of declarative query languages can sig-
nificantly reduce the overhead of working with weakly struc-
tured relational data, allowing real-time, discussion-oriented
scientific Q&A as opposed to relying on offline programming.
To test this hypothesis, we have designed and deployed a
web-based query-as-a-service system called SQLShare [5]1

that emphasizes a simple Upload/Query/Share workflow over
heavyweight database engineering and administration tasks.
Data can be uploaded to SQLShare “as is” and queried di-
rectly; a basic schema is inferred from the column headers and
data types. Queries can be saved as views and shared with
colleagues by exchanging urls. In prior work, we found that
this approach can capture most relevant tasks and improve
productivity for distributed, asynchronous collaboration [6].

In this paper, we consider whether our query-as-a-service
approach can also be used to improve productivity in real-
time, synchronous, face-to-face collaboration, even without
assuming that the data has been integrated into some pre-
engineered schema. The challenges are significant: data must
be cleaned and integrated on-the-fly, and science questions
must be disambiguated and encoded in SQL, also on-the-fly.
If successful, this level of interactivity for scientific Q&A
is not just faster, it’s different. Instant results to questions
arising from organic discussion changes the nature of the
meeting: instead of assigning action items for investigators
to complete offline when the “trail is cold,” the researchers
can test hypotheses and explore the implications online,
during the meeting, while the ideas are fresh and everyone’s
perspective can be incorporated — “data-driven discussion.”

We test this approach in the context of the GeoMICS project [1],
a multi-institution, multi-disciplinary oceanographic collabo-
ration between geochemists and molecular ecologists spear-
headed by co-author Armbrust. The team acquired data
during a research cruise in May 2012 in the northeast Pa-
cific Ocean. The overall purpose of the cruise was two-fold.
The scientific goal of the cruise was to study a well-defined

1https://sqlshare.escience.washington.edu/
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transition zone between coastal and open-ocean waters. To
do this, the PIs employed a battery of physical and optical
sensors, biological and chemical assays, and sample-based
measurement techniques to collect hundreds of independent
physical, biological, and chemical variables at hundreds of
discrete locations east of, west of, and directly inside the
transition zone between shore and deep ocean. The second
goal of the cruise was collaborative: to bring together “two
largely independently operating research communities – geo-
chemists and molecular ecologists” [1], for the first time, in
order to study the same types of biogeochemical features in
the ocean through the lens of very different types of data and
analyses. In conversation, the scientists from different disci-
plines explicitly stated that they intended to “prove that we
can work together” so that funding agencies would support
these types of collaborations on program scale [1].

The second stage of the project was a data synthesis workshop
hosted in February 2013, nine months after the initial cruise.
One of the requirements of participation in the GeoMICS
project was that all participants agree to complete sample
analysis in a timely manner and share the data broadly
within the group; this workshop was the first test of this
mandate. Before the meeting, the team prepared preliminary
datasets (primarily spreadsheets and delimited ASCII files)
and centralized them via DropBox. These data were uploaded
as-is into SQLShare [5] by the computer science team —
each file (or sheet) became a distinct table with attribute
types assigned automatically by SQLShare. At this stage,
no attempt was made to integrate the data or prepare some
unified schema.

Also prior to the meeting, the participants were asked to
submit a set of English questions representing their science
interests, an adaptation of the “20 questions” requirements-
gathering methodology proposed by Jim Gray [4]. These
preliminary questions helped resolve ambiguities and expose
relationships in the raw data, and also served to engage with
the science team and generate enthusiasm in the lead up to
the meeting.

During the meeting, the group of more than 40 investigators
and students came together to compare, contrast, and com-
bine their data and insights, both within each discipline and
especially across disciplines. To conduct the “field test” of our
query-as-a-service technology and our schema-free approach,
two computer science co-authors also attended this workshop
to sit in on the meeting and act as “SQL stenographers,”
translating questions into SQL in real-time in response to
the discussion, while working with the scientists one-on-one
and in groups as appropriate to clarify the science and re-
solve ambiguity. Some quantitative questions were answered
directly in SQLShare (“What were the top five proteins ex-
pressed at each station?”) For less precise questions (“What
is the relationship between temperature and salinity?”), we
generated visualizations using domain-specific tools that were
linked to SQLShare programmatically in the days leading up
to the event.

In this paper, we describe the science, the data, the queries,
and our findings from this experiment, concluding that on-the-
fly integration and analysis is feasible with essentially pure
SQL, despite the lack of an engineered schema, the challenges

of interdisciplinary communication, and the bleeding-edge
science. In particular, we found the web-based query-as-a-
service system to be critical: Given the SQLShare UI, we were
able to refactor common queries into reusable views, organize
the views using simple tagging schemes, and keep track of
recent recent results during discussions. Given the SQLShare
REST interfaces, we were able to avoid writing any new code
to parse unusual file formats, and we were able to export
data automatically to client applications preferred by the
researchers. Overall, the combination of the technology and
the “social protocol” used to collect data and queries by the
lead PI were instrumental in the success of the experiment.

2. GEOMICS SCIENCE
In this section, we describe the scientific motivation behind
the GeoMICS project.

Over the last three decades, extensive oceanographic surveys
have been conducted to improve the understanding of large-
scale circulation and biogeochemical cycles in the marine
environment. The World Ocean Circulation Experiment, the
Joint Global Ocean Flux and GEOTRACES programs, along
with many other studies, demonstrate that microbial commu-
nities drive the biogeochemical cycling of the major elements
(e.g., carbon, nitrogen, phosphorus, sulfur) on our planet.
The results of these studies indicate that marine microbes
generate and recycle about half of the organic carbon pro-
duced on Earth and carry out all nitrogen fixation, ammonia
oxidation, denitrification, sulfur reduction/oxidation, and
mediate the distribution and speciation of bioactive metals
within the oceans. Furthermore, there is now evidence for the
existence of biogeochemical oceanic provinces where large-
scale chemical and physical features dictate microbial activity
and the resulting elemental cycling. Recent data indicate that
the oceans are undergoing rapid changes: ocean waters are
warming, wind patterns are shifting, and ocean circulation is
changing, together shifting turbulent mixing and delivery of
nutrients from deep to surface waters. Such dramatic changes
underlie an urgent need to identify the processes and quantify
fluxes that control the biogeochemical cycles in the ocean.
Understanding the factors that dictate province boundaries
will allow predictions of how these regions may expand or
contract under future ocean conditions.

To explore these questions, two largely independent op-
erating research communities—geochemists and molecular
ecologists—conducted a cruise to the northeast Pacific Ocean
to sample the province boundary between offshore High-
Nitrate, Low-Chlorophyll and coastal waters. The aim was
to examine the interactions between changes in microbial
diversity, community functions, and chemical features. The
transition zone between these two oceanographic provinces is
characterized by a strong gradient in biogeochemical proper-
ties and high biological activity. The oceanographers collected
an unprecedented suite of biological samples (metagenomes,
metatranscriptomes, metaproteomes and metabolomics of
viruses, bacteria and phytoplankton) and chemical measure-
ments (nutrients and dissolved and suspended particulate
iron, copper, zinc, manganese, cobalt, nickel and cadmium)
from surface to seafloor. Together, these samples will help
elucidate the interactions between changes in microbial diver-
sity, community functions, and chemical features at relevant
spatial resolution.
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1: An example visualization product from the workshop. The map at left shows the locations of the seven
measurement stations visited during the cruise, labeled P1 through P8 (excluding P7) from east to west. The
plot at right shows the ratio of iron (Fe) concentration to nitrate (NO3) concentrations throughout cruise
area to a depth of 300m. To generate this figure, we used SQLShare to join three disparate datasets—metal
concentrations; nutrient concentrations; and an external bathymetry dataset—and then compute the Fe/NO3

ratio using NULL-and-0-aware division. We then used our Ocean Data View adaptor webapp to download
the derived dataset, imported it into ODV, and generated this visualization. In the plot at right, each black
dot shows locations where the ratio was defined, and the colors are automatically interpolated by ODV.

The data collected from this cruise, and the collaborative
process by which the data will be analyzed, poses a challenge
for conventional database technology. These highly inter-
disciplinary, highly collaborative projects are characterized
by extremely heterogeneous data sources, diverse user back-
grounds and skillsets, and a need for real-time collaborative
analysis. This paper represents an initial case study testing
a query-as-a-service platform.

3. METHODOLOGY
In preparation for and during the data synthesis workshop
planned by the researchers, the team applied the following
methodology.

A minimal standardized data template was prepared and
mailed to all GeoMICS participants. Each row of the tem-
plate includes six attributes (Event, Latitude, Longitude,
Station, Depth, Source) that together represent a specific
sampling event, the location, the depth below the surface in
meters, and the instrument used. These semantics were not
enforced or validated; as a result, many datasets required
some transformation before they could be integrated.

After the distributing the template, the Lead PI sent an
email asking all GeoMICS participants to upload their data
to DropBox. Just before the workshop, roughly 80% of partic-
ipants had responded and provided their data. Once the data
appeared in DropBox or were sent by email, we uploaded
the data sets to SQLShare, which parsed the basic structure
of the data and inferred column types. While most data
was ingested into SQLShare automatically, some datasets ex-
posed bugs in SQLShare’s parsing capabilities: illegal column
names containing bracket characters needed to be replaced
offline, for example.

Once the data was uploaded, additional formatting and clean-
ing steps were performed in SQL directly. For example, nu-
meric values were suffixed with their units, making SQLShare
interpret the value as a string. Interestingly, once the re-
searchers saw their data in SQLShare and recognized the abil-
ity to combine data from different sources, we were swamped

with emails asking for help “attaching” data. These ques-
tions exposed some misunderstandings — some researchers
believed that re-uploading data was the only way to combine
two datasets. The ability to write queries to accomplish the
same task was not immediately obvious.

The PI also solicited representative questions capturing sci-
ence goals; this process was modeled after Jim Gray’s “20
questions” approach [4]. We described how they were evalu-
ated in Section 6.

To facilitate analysis using tools familiar to the researchers,
we also built client applications against SQLShare’s REST
API (which took approximately one day — a very low level of
effort.) These tools are described in more detail in Section 4.

The meeting was organized as a plenary session on the first
day, then two breakout sessions on the second day (one by
discipline, and another intentionally interdisciplinary). On
the first day of the workshop, we gave an introductory presen-
tation to the group on SQLShare, but offered no additional
training in either SQLShare or SQL. We relied entirely on
hands-on support during the breakout sessions (Figure 2).
The results of these sessions and a discussion of lessons
learned are provided in Section 7.

4. THE TECHNOLOGY
4.1 SQLShare
At the University of Washington eScience Institute, we are
developing a new “delivery vector” for relational database
technology called SQLShare, and studying how it can be
used to satisfy both scientific workflow requirements and
ad hoc interactive analysis. SQLShare is a web-based query-
as-a-service system that eliminates the initial setup costs
associated with conventional database projects and instead
emphasizes a simple Upload/Query/Share protocol: users
upload their table-structured files through a browser (or
programmatically via an API) and can immediately query
them using SQL — no schema design, no preprocessing, no
database administrators. SQLShare users derive new datasets
by writing and saving SQL queries. Each derived dataset
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2: Questions that came up during breakout sessions
were translated into SQL queries in real time, with-
out requiring any up-front schema design or applica-
tion building efforts. Here, the lead author presents
the iron/nitrate ratio plot (Figure 1) to researchers
from a variety of backgrounds.

is managed as a view in the underlying database: a named,
permanently stored query. Each dataset is also equipped
with descriptive metadata. Everything in SQLShare is ac-
complished by writing and sharing views: Users can clean
data, assess quality, standardize units, integrate data from
multiple sources, attach metadata, protect sensitive data,
and publish results.

SQLShare has three components, all of which are cloud-
hosted: a web-based UI, a REST web service, and a database
backend. The UI is a Django Python application (a web
framework similar to Ruby on Rails), and hosted on Amazon
Web Services. The UI communicates with the backend exclu-
sively through REST calls, ensuring that all client tools have
full access to all features. The web service is implemented on
Microsoft Azure as (one or more) Web Roles. The database
is implemented using Microsoft’s SQL Azure system, which
is very similar to Microsoft’s SQL Server platform.

Version 1 of SQLShare was completed in 2010 and has been
in use by scientists at UW and elsewhere since that time. To
complement and extend its functionality for this experiment,
we also produced several custom tools which interact with
SQLShare via the REST API. These tools were designed to
add domain-specific interfaces for oceanography to SQLShare,
to provide online, ad hoc, scriptable visualizations, and for
assistance in writing SQL statements to execute data cleaning
and integration tasks. Some of these tools served as early
prototypes for features that might be added as core SQLShare
functionality in a later version.

4.2 SQL generators for common patterns
A key advantage of using SQL for science is that relational
algebra can express core data cleaning, integration, and anal-
ysis operations natively: cleaning is usually transformation
with SELECT statements, and integrating data from different
datasets is usually a JOIN with the appropriate condition.
Unfortunately, actually writing these SQL expressions can
be complicated, time-intensive, and error-prone. To aide in
this task, we developed scripts to programmatically generate
SQL statements using common idioms.

3: The SQLShare Ocean Data View adaptor runs as
a free Google App Engine web application. It auto-
matically reformats datasets from SQLShare so that
they can be automatically imported into ODV, a
domain-specific tool for data visualization, analysis,
and presentation.

One example would be to create a view that contains all
columns from a source table with one column renamed: there
is no standard SQL construct to do this in a concise manner
— each and every column must be explicitly mentioned in
the SELECT clause. But given simple syntactic sugar to ex-
pand SELECT * FROM TABLE into SELECT col1, col2, col3

FROM TABLE a user can easily modify this to perform the de-
sired operation by changing col3 to col3 AS col4.

A second example is a global find and replace. Null values are
frequently represented by some domain- or researcher-specific
sentinel value in the data: oceanographers prefer -99, for
example. Replacing nulls in a single column involves a simple
CASE expression, but replacing values in all columns involves
an enormous amount of typing. Automatically generating
the appropriate queries to replace values in every column in
which they appear reduced effort.

4.3 Ocean Data View adaptor
Oceanographers commonly visualize data in a domain-specific
tool called Ocean Data View (ODV).2 ODV accepts plain
rows-and-columns CSV or text files as input, however the
process of importing an arbitrary file is time-consuming and
manually intensive because the user must associate each
column with a known data type. Any errors made during
this import process typically cause users to abandon their
progress and start over from the beginning—indeed, we saw
this happen at least twice during the workshop when users
attempted to import datasets not produced by our adaptor.

This manually-intensive process can be avoided if the in-
put file has a shape that ODV recognizes. In particular, the
order and names of columns are important. The name of
the cruise, the station of the measurement, latitude, longi-
tude, and depth must be located at the beginning of the
table. And ODV will not detect that a field called ‘Lati-
tude..Decimal.deg.’ (a sanitized form of ‘Latitude (Decimal
deg)’ found in a dataset produced by R) is a latitude and thus
the automatic import will fail. Using the SQLShare REST
interface, however, we can automatically inspect the columns
of a dataset, determine whether it is compatible with ODV,
and then programmatically construct the SQL statement to
permute and rename columns so that the resulting dataset
can be automatically imported into ODV. We packaged this

2http://odv.awi.de/
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4: The Sage Notebook runs in the Amazon Cloud.
In this example, we use the SQLShare REST API
to download tables, and simple Python commands
to plot the relationship between two columns.

logic into a Python web application, which we then deployed
on a free Google App Engine instance. This tool enabled
anyone at the workshop to visit the application, enter the
name of an original or derived dataset, and download a trans-
formed version of that dataset ready for automatic import
into ODV. This tool enabled users, some of whom may have
never logged into SQLShare nor seen SQL code, to easily
import, visualize, and analyze data without any input or
assistance from the computer scientists at the workshop.

SQLShare’s REST interface made our tool development par-
ticularly easy: an author who had never used REST before
was able to develop both of these tools from concept to
production in about twelve hours.

4.4 Sage notebook adaptor
We extended SQLShare with support for basic visualizations
using Sage. Sage is an open source bundle of mathematics
libraries and programs, intended to provide many features of
well known programs such as R, Mathematica and Matlab.
We set up a Sage Notebook Server on an Amazon Web
Services instance and provided a function get table that
uses SQLShare’s REST API to download a table and make
it directly accessible in the notebook. The entire design,
development, and deployment process was completed in less
than an hour.

5. THE DATA
In this section, we describe the measurements made during
the cruise and then discuss the characteristics of the processed
datasets that were available for the data synthesis workshop.

5.1 Measurements
Three categories of measurements were collected:

Underway data were collected by analyzing the seawater
flowing continuously through a sensing apparatus mounted
underneath the vessel at a fixed depth of three meters below
the surface. This platform was equipped with a continuous

5: The top of the rosette of Niskin bottles, a wa-
ter sampling apparatus. These caps snap shut, trap-
ping the water inside as the sensor package descends
through the water column. Each bottle can be closed
electronically at a different depth, and captures 10 L
of water – enough for a variety of chemical and bio-
logical assays.

flow-throw thermosalinograph (measuring salinity and tem-
perature, as well as conductivity) and a SeaFlow [11] device
that uses flow cytometry to count and classify the organisms
in the water. Other data include latitude and longitude from
the ship’s navigation system, and environmental factors such
as air temperature, humidity, and barometric pressure.

Sample data were gathered when the ship was anchored
on station, using one of three techniques:

• In a cast, a rosette of up to twenty-four empty 10L
bottles (Figure 5) were lowered, while attached instruments
continuously sampled data such as temperature, salinity,
fluorescence, and nitrate concentration. Based on this depth
profile, where measurements were taken at other stations,
and the intended use of the water samples, the scientists
then chose at which depths to collect water samples and how
many bottles to close. The rosette was then raised to the
surface, while each bottle shut at its chosen depth to capture
a snapshot of the water at that specific time and location.

• A surface pump continuously pumped water from 5m
below the surface up to the deck of the ship. Some of the
water samples were filtered through various size filters to
collect particles and organisms of particular sizes, and in
other cases, particle-free seawater was gathered.

• A special McLane pump was configured with filters of
chosen sizes, lowered to a specified depth, and then filtered
water continuously until either the exiting water pressure
dropped (i.e., the filter clogged because it had collected
enough samples) or a fixed time period expired. The McLane
pump emulates the surface pump operation, but at depth.

Some samples were processed in a lab space on ship, while
others—typically the filtered organic samples for genomics,
proteomics, or transcriptomics (collectively referred to as
“-omics”)—were frozen, catalogued, and analyzed in the in-
dividual scientists’ lab facilities. In addition to the features
described above, concentrations of trace metals (copper, iron,
zinc, cadmium, manganese, nickel and cobalt) and inorganic
nutrients (nitrate, nitrite, ammonium, phosphate, silicic acid,
dissolved inorganic carbon, and biogenic silica) were mea-
sured. For all sample types, multiple samples were often
collected at each station for the purposes of scaling up the
number of samples or repeatability of the measurements.
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Finally, cast data were collected from the instruments at-
tached to the rosettes lowered during casts. These data give
a view through the water column of physical and biological
properties. Like the sample data, these data are collected at
similar times and the same location, but they capture the
entire water column rather than a few discrete depths.

5.2 Ingested Data
In total, 49 original datasets were available and uploaded
to SQLShare for use at the data synthesis workshop. These
data represent preliminary offline processing of most of the
physical and chemical variables. In contrast, only a few of the
biological datasets were prepared in time for the workshop,
in part because of the labor- and CPU resource-intensive
processing steps to generate these data. Additionally, the
integration-heavy theme of this workshop uncovered another
process issue with varied biological data, discussed below in
Section 7.4. There was some resistance to sharing data before
it was fully quality controlled.

Organization. The GeoMICS data synthesis workshop was
distinctive in the sense that the cruise had been planned with
collaboration in mind3. To this end, every researcher was
instructed to associate each measurement with a shared key.
In particular, the following combination of four factors can
uniquely identify each sample: which Station the ship was at,
which Instrument collected the data, from what Depth the
sample was taken, and during which Event—a cast, a position
of the surface pump, a lowering of the McLane pump, etc.—
the sample was gathered. The science team promoted the
concept of a unique label formed by concatenating the four
attributes participating as a key, but we typically ignored
this surrogate key (which violates first normal form) and
referred to the composite key directly in our queries. In
addition to the five columns described, the template also
included a Latitude and Longitude column containing the
locations of the Stations. Though redundant, these columns
were intended to aid scientists in linking their data with the
template and as a sanity check in case the human-generated
Station label on a dataset was incorrect.

To collect data for the workshop, an Excel spreadsheet con-
taining all valid four-column-keys was distributed to the
researchers, who appended the columns containing their data
and then uploaded the datasets to a shared repository setup
by the Lead PI. Some datasets used only a subset of the
key: the -omics data were collected only at the surface using
the surface pumps and hence included only the Station num-
ber, and the underway data used Latitude and Longitude as
keys because they were collected at all locations, not just on
Station.

Example. Table 1 shows a partial subset of a trace metal
dataset uploaded to SQLShare. The left four columns give
the composite key identifying the cast, station, depth and
instrument at which the water analyzed to obtain these values
was sampled. The right four columns show the concentrations
of iron (Fe) and copper (Cu), as well as error bars given by
their standard deviations. This snapshot is only part of the
entire table; the original dataset has 15 columns, including

3This project was unusual: While nearly all cruises host the
experiments of many independent researchers, these different
measurements are practically never integrated!
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6: The number of rows and columns in the 49 orig-
inal datasets. Dataset size covers seven orders of
magnitude from 1 to 10 million rows. The number of
columns ranges from 2 to 69: most datasets measure
few variables, but several measure 30 or more.

some redundant key information (Latitude, Longitude, and
Label) and the concentrations of zinc and manganese, and
74 rows, corresponding to additional depths and stations.
During science discussions at the workshop, this dataset was
joined with other datasets to generate the visualizations of
both Figure 1 and Figure 9.

Characteristics. Figure 6 shows the distribution of the
number of columns and rows in the 49 datasets collected.
The number of rows indicate how many measurements each
dataset contains, ranging from 1 row to 10 million rows—a
spread of seven orders of magnitude. The input data contain
both measurements and external datasets, and each can be
large or small. At the large end, both continuously-sampled
underway data and the biological protein or gene sequence
data extract from stored samples lead to datasets with many
rows, while at the small end some data is taken only once a
few times throughout the cruise, such as instrument calibra-
tion. Similarly, some external databases that we imported
are very small, such as the bathymetry data representing
the depth of each station. The largest dataset was a BLAST
function map, which maps database-specific gene IDs to
human-generated descriptions of their biological functions.

The number of columns indicates the number of variables
measured in each dataset. Many of these datasets only mea-
sure a few quantities: over 75% of the input datasets have
20 or fewer columns, but several datasets cover dozens of
variables and have up to 69 columns. Datasets with fewer
columns are typically external datasets that do not fit the
template. For instance, the bathymetry dataset above has
only two columns: the Station and the corresponding Depth
of the ocean floor.

5.3 Dataset idiosyncrasies
We uncovered a number of idiosyncrasies in the source data
provided by the scientists. Here are a few examples:

Template misuse: In some datasets, the Latitude and Longi-
tude columns were switched. We suspect this was caused by
the creator copying and pasting columns and column headers
from the template into a pre-existing spreadsheet, rather than
copying the data into the template. In another dataset, the
leading ‘P’ was omitted from Station names, e.g., P8. We were
able to repair both these errors by modifying the wrapper
views in SQLShare, in the former case by expanding SELECT

* FROM table to SELECT Event, Latitude AS Longitude,
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Event Station Depth (m) Source Total Fe (nM) Stdev Fe Total Cu (nM) Stdev Cu

1004 P8 20 Niskin 0.265 0.012 1.389 0.036
1004 P8 33 Niskin 0.166 0.005 1.052 0.01
1004 P8 50 Niskin 0.164 0.027 1.089 0.007

1: A sample of the first few rows and columns of a dataset containing the measured trace metal concentrations.
The left four columns give the composite key identifying the cast, station, depth, and instrument at which the
water used to measure these values was sampled. The right four columns show the measured concentrations
of iron (Fe) and copper (Cu), as well as standard deviations on these values. These data, provided by Jagruti
Vedamati, were used in generating both Figure 1 and Figure 9 live at the workshop.

Longitude AS Latitude, Station, ... to swap the column
names. In the latter case, SQLShare had automatically de-
tected that Station contained only integers, so we had to
modify the view to cast it to a VARCHAR and prepend a
‘P’. In both cases, we caught these problems when debugging
queries in real time, e.g., “Why are there no results for this
join?”, and were able to rapidly correct them directly in SQL.

Embedded tables: Some uploaded spreadsheets contained mul-
tiple “tables.” In a table of protein sequence and BLAST data,
the first 50 or so columns contained data about the proteins
found when sequencing the data and their annotations. To
the right of these columns, the scientist had added aggre-
gate results such as “Given the column identifying the most
specific taxonomic group (e.g., family, genus, species) this
protein is found in, how many copies of the taxa were found?”.
We were able to express these derived tables as views over
the raw data, and then we modified the SQLShare wrapper
to remove those excess columns from the base dataset. This
change highlighted another advantage of SQLShare: the ta-
bles in Excel were not stored as programs, hence the method
by which they were computed was not obvious, and only rep-
resented a snapshot of the source data. In contrast, because
SQLShare stores queries as views, it both documents the
provenance of derived data and automatically stays updated
when the base datasets change. When shown the SQLShare
approach, the scientist recognized the value of the approach
and was “excited to see more”.

Data in file names: Data was frequently embedded in the
names of uploaded files. For example, recall that cast data
from thermosalinographs (TSGs) and other instruments are
collected continuously during every lowering and raising
of a rosette. The natural procedure in this case was for
scientists to save one file for every individual cast (identi-
fied by the Event column in our composite key). When up-
loaded into SQLShare, these files were named ‘event1001.cnv’,
‘event1004.cnv’, etc. (CNV is a proprietary format used by
Sea-Bird Electronics in thermosalinographs and other sen-
sors). We were able to combine these datasets using a UNION
ALL statement of the form SELECT *,1001 AS event from

[event1001.cnv] UNION ALL ... to form a single unified
cast data table.

Excessive processing: In several cases, uploaded datasets were
overly pre-processed. For the protein dataset referred above,
the table was actually a composite of many datasets joined
together. The initial few columns contained a protein group
identifier, the number of unique peptides on that protein,
and the count of how many times it was found in the sample.
The next 6 columns contained the top 3 functional anno-
tations (i.e., human descriptions of what scientists believe

that protein does) associated with that protein and the rela-
tive abundance of the selected function among all associated
functions. When asked why he chose to do it this way, the
scientist admitted that 3 functional annotations was an ar-
bitrary choice, but that he needed to make some choice to
be able to fit the data into a usable spreadsheet form. In
this case, we wished we had the raw data: we could have
stored the initial columns describing the sequenced protein
counts separately from the functional annotation database,
and we could create one or more views to produce the top 3
annotations, the top 5 annotations, or even vary the number
of annotations based on a per-protein significance criterion.

6. PREPARING FOR THE WORKSHOP
In advance of the workshop, the Lead PI solicited English
questions from the project participants. One intention was to
get the scientists into a preparatory mindset for collaboration
and integration at the workshop. The second goal was to
familiarize the computer science team with both the uploaded
datasets and the domain terminology we would encounter at
the meeting. This enabled us to better assimilate into the
science discussions and more easily express queries in SQL
in real time.

The responses were collected in a shared Google Doc. Before
the workshop, there were 6 queries; after the workshop we
had received more than 30. Here are a few examples, roughly
in increasing complexity:

1. “What is the relation between Syn. (bacteria, virus, Mi-
cromonas) concentration and temperature (salinity)?”

2. “When the iron concentration is below X nm, how many
iron related proteins (based on annotations) are detected?”

3. “What are top 5 highest concentration organisms based
on cell number (based on proteomes, based on genome) at a
given depth or site?”

4. “Can we use a subset of well-understood phenomena to
‘ground truth’ the GeoMICS approach, documenting (hope-
fully) the expected linkages between genes, transcripts, and
proteins, on the one hand, and processes and stocks, on
the other? Examples: photosynthesis rate, limiting nutrient,
plankton composition, growth rate, etc.”

In this section, we describe the process by which we answered
these English questions using SQL.

Phase I: Translating existing analyses. The week before
the meeting, the science and computer science teams at UW
met face-to-face and electronically to review the organization
of the data, examine two datasets, and discuss the (intra-
dataset) analyses the scientists had already been performed,
such as the protein taxa counts found in the embedded tables
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described in Section 5. We were easily able to translate
existing analyses into SQL, as these queries mapped directly
into group-by and aggregate statements. This phase also
provided an opportunity for the computer science team, who
had used SQLShare only sparingly prior to this meeting, to
familiarize themselves with the system.

Phase II: Answering novel queries. Next, the computer
science team attempted to answer the 6 sample questions
using the 30 or so datasets available (with more coming in).
At first, this process was extremely difficult: datasets were
often named for the category of data (e.g., ‘nutrients’), while
questions referred to features (e.g., ‘phosphate’, ‘nitrate’,
or ‘ammonium’). The names of columns storing a feature
and the English words describing them did not align (e.g.,
‘Tot.Fe.nM’ vs. ‘iron concentration’). Consequently, we be-
gan Phase II by opening each dataset in SQLShare, reading
its column names and looking at a few sample rows, and
perhaps performing a web search to look up certain terms.
Next, it was often unclear by what features datasets should
be joined. Two different datasets will rarely contain measure-
ments using equal composite keys: this can be true only if
they were taken by the same Instrument during the same
Event, i.e., using water samples from the same bottle on
the same cast. Is it appropriate to join measurements from
different casts? Does Depth have to match exactly, or can it
be close (and what does ‘close’ mean)? Many -omics datasets
omitted Depth information entirely; we later learned that
these datasets were collected at 5 m depth. As we found when
discussing with science colleagues, in practice, scientists inte-
grate data using Station and Depth, comparing data from
different instruments and from different casts—but at the
same physical location.

Concrete Example: Query 2. Consider Query 2 above, which
seeks to link iron concentrations with iron-related proteins.
The data containing the iron data was easy to find us-
ing keyword search for ‘Fe’—[V2 GEOMICS Fe-Cu-Mn-Zn-
Vedamati.csv]—and we gained confidence in this guess when
the units used in the English query, ‘nm’, nearly matched
the apparent units of the column header, ‘Tot.Fe.nM’.

Next we needed to find and count iron-related proteins. The
protein dataset was one of those we analyzed in Phase I, so we
already knew which dataset to use. However, the functional
annotations in this dataset were human-generated text such
as “ribosomal protein L5”—How do we determine which of
these are related to iron?

We used SQLShare’s interactive querying functionality to
develop this query. We started by filtering the table using the
obvious WHERE clause, Function_1 LIKE '%iron%', and found
10 matches. Next, we added OR Function_1 LIKE '%Fe%'.
This query returned 95 matches, including false matches
such as “Polyribonucleotide nucleotidyltransferase”. Because
of the interactive nature of writing queries in SQLShare, we
spotted the problem instantly: the LIKE operator is case-
insensitive in MS-SQL, so the common transferase-related
proteins would become false positives. We then replaced
this second clause with OR Function_1 LIKE '%Fe[^a-z]%'

to catch instances of the literal ‘Fe’. Though this formula-
tion is imprecise, we observed that it did not result in false
positives. Finally, we added a third clause to catch instances

WITH SurfaceMetals AS
(SELECT Station,MIN([Depth..m.]) AS MinDepth
FROM [V2_GEOMICS_Fe-Cu-Mn-Zn-Vedamati.csv]
GROUP BY Station)

SELECT iron.Station
, iron.[Tot.Fe.nM.]
, SUM(protein.spectra_counts) AS ProteinSpectra
, protein.[Depth..m.] AS [SurfacePumpDepth..m.]
, iron.[Depth..m.] AS [NiskinDepth..m.]

FROM [V2_GEOMICS_Fe-Cu-Mn-Zn-Vedamati.csv] iron,
[Iron-related_Proteins] protein,
SurfaceMetals

WHERE protein.Station = iron.Station
AND iron.[Depth..m.] = SurfaceMetals.MinDepth
AND SurfaceMetals.Station = iron.Station

GROUP BY iron.Station
, iron.[Tot.Fe.nM.]
, iron.[Depth..m.]
, protein.[Depth..m.]

7: The SQL to answer Query 2 finds the relation-
ship between biological expression of iron-related
proteins and the actual concentration of trace iron
in the water.
of “%ferr%”, as in “ferrous” or “ferrodoxin”, which expanded
the result to 19 proteins. By combining across all three func-
tional annotations, the result expanded to 28 rows. Though
this may seem small, this preliminary database of annotated
proteins contains only 3130 rows, so these represent about
1% of all identified proteins.

Having developed a suitable query to identify iron related
proteins, we saved this view as a derived dataset in SQLShare,
[Iron-related proteins]. This isolates the logic to identify iron
related proteins from the rest of Query 2, labels the saved
logic as a dataset with a descriptive name that can be found
by keyword search, and enables this intermediate result to
be reused in answering other questions. Additionally, should
we need to amend the clauses in the filter for more accurate
protein identification, this view can be edited later and the
derived views will automatically reflect the changes.

Finally, we needed to join the iron related protein data
with the iron concentration data. This was a simple join
between these two datasets based on depth. However, in this
case there were actually no depths that matched: the -omics
protein data was collected 5 m deep, while the shallowest iron
measurements came from 10 m down. In this case, we simply
selected the shallowest iron measurement at each station. The
final query we used is shown in Figure 7. This view defines a
dataset that contains, for each station, the iron concentration
and the total count of iron-related proteins. We also include
the depth of the source of each dataset in case these are
useful in later analysis. Note that while this dataset does not
directly answer Query 2, for any concentration value X a
trivial SELECT statement will compute the answer.

Summary and Lessons Learned. This section has shown
how we were able to begin answering English science ques-
tions in SQL. As exemplified by the iron example, the tech-
niques used were manifold but were easily mapped into SQL.
Ultimately, we were successful in expressing the science ques-
tions in SQLShare for the queries available ahead of the
workshop. Some queries, like Query 4, appear too abstract
to be answered with SQL.4 However, when talking with sci-

4At the workshop, one science participant proposed the query
SELECT paper FROM data!
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entists we were often, though not always, able to “compile
down” these abstract queries into concrete questions.

One takeaway from Phase II was that the initial reading of
the sample queries and exploration of the datasets would
have been much faster if done in a tight feedback loop with
the scientists that conducted the experiments. Conversely,
we found that the manual process of looking through each
dataset and identifying what it measured was useful, because
we were then able to answer questions on-the-fly at the work-
shop without too much assistance from the scientists. This
limited the disruption to their conversations. In practice, a
balance should be struck: the computer scientists need to
know enough about the data to work quickly and indepen-
dently, but the ability to ask scientists questions about the
nature of the datasets with short turnaround for answers
could clear up issues in seconds that would take hours to
work out alone.

After completing Phase II, we did modify the Google Doc
collecting English science questions to request that scientists
adding questions also indicate which datasets they thought
contained relevant data. This change reduced the initial
grokking time for each question. We also proposed a new
feature for SQLShare: expanding the search facility to search
over column names as well as dataset names, tags, and de-
scriptions. This ability would also have reduced the time to
map queries to data in Phase II. This is only one of many new
SQLShare features to arise from this workshop; we describe
more in Section 7.

7. AT THE DATA SYNTHESIS WORKSHOP
At the workshop, more than 40 investigators and students
came together to review their data as a group, develop ques-
tions for further investigation, and draw some interesting
conclusions from the assembled data. Much of the discussion
revolved around what was different in different parts of the
ocean—either east and west across stations, or vertically
between different depths through the water column.

Our experiences at the meeting repeatedly underscored the
value of interactivity for these types of integrative, collabora-
tive summits. In this section, we summarize what happened
at the workshop, present illustrative anecdotes showing the
usefulness of our tools and approach and the transformative
nature of interactivity. We conclude with a list of lessons
learned.

7.1 Workshop schedule
The 2.5-day workshop began about 4 pm the first afternoon.
Armbrust, the Lead PI, began with a short welcome and
introduction to all the collaborators, then four scientists, rep-
resenting four types of data, gave short talks with aggregate
summary’s of individual participants’ initial findings in that
area. The goal of these talks was to share concisely with
the group the scope of data available to be analyzed at the
workshop. The lead author then gave a brief overview of the
computer scientists’ role and goals, and demonstrated the
SQLShare, ODV adaptor, and Sage adaptor tools. He used
the SQL for the example queries described in Section 6 to
illustrate the types of analysis available for the meeting.

The rest of the workshop consisted of three half-day breakout
sessions in which four groups of scientists spread across two
rooms. One computer scientist would roam each room, ob-
serving the discussion and looking for opportunities to help
answer questions. On the morning of the second day, four
groups doing science with similar types of data—eukaryotic
molecular organisms, prokaryotic molecular organisms, un-
derway/metals, and organics—met together to determine the
key findings of their data. In these groups, we were often
asked to answer questions such as

5. “What is the correlation between each of the following
metals and phosphate? Fe, Cu, Mn and Zn.”

6. “What is the relation between Zinc and Cobalt?”

7. “Can you plot Virus Count vs. Salinity?”

During the afternoon session of the second day, the four
groups above were sliced horizontally and mixed and matched,
with the goal of comparing data across domains, including
taking the within-group findings of the morning and trying
to correlate them across groups. These queries were more
abstract and required combining more datasets, for example:

8. “Combine all data sets, so that we can make sense of
them using ODV. Let us start by combining GDGT [Glycerol
Dialkyl Glycerol Tetraether lipids], Carbon, and O2.”

On the third day, the scientists split into groups to discuss
logistics for the future of the GeoMICS collaboration. This
included: developing a schedule of how remaining samples
should be split up and analyzed; specifying holes in the
collected data to be improved in the next cruise; and choosing
topics for a “project report” paper to be written this summer.
During this time, the computer scientists mainly worked
one-on-one with a few scientists continuing the analyses of
the previous day and also beginning work to analyze the key
findings of this project towards the group paper.

7.2 Observations of oceanographers
We made the following observations while helping integrate
and analyze data and during side discussions at the workshop.

Available technology Oceanography is an empirical sci-
ence: almost all papers are based on the interpretation of data.
As computer staff are very expensive, often even more costly
than a full-time researcher, many of the groups have either no
computer staff, or one person to help an entire department.
Many PIs had used IT staff, or volunteer undergraduate help,
to set up scripts, databases, or other processing pipelines in
the past, but those tools were abandoned when the staff left
or the students graduated. These anecdotes underscore the
value of our query-as-a-service approach.

Visualization It is already impossible to grasp a dataset of
1,000 rows, something nobody in the the database community
would refer to as big data. Consequently, data visualization
is a key aspect of the way oceanographers get insight into the
data generated by their experiments. Many at the workshop
often used our Sage webapp to quickly visualize 2-variable
datasets, used ODV (via our web adaptor) to analyze multi-
variate relations, or downloaded an integrated dataset and
visualized it in R. For complex analyses, the choice of tech-
nology was largely based on familiarity—though the ODV
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adaptor greatly speeded-up context switching time—but across
users the Sage workbook saw a lot of activity because of its
low-overhead, fast-response-time interface.

Data Manipulation and Integration Surprisingly, we
did not see people using R to actually manipulate the data
or combine it with other data sets (using for example R’s
merge feature) on the fly. This surprised us because this task
is relevant not only in cross-researcher integration tasks like
at this workshop, but also to compare the data with external
data sources, like gene databases or satellite pictures. The
data format of these sources may be relational, but may
also come in the form of an image or XML. Without our
help, the main means by which researchers compared their
data with other data, was by looking at pre-generated data
visualizations (for example in a powerpoint presentation) of
the other data, rather than merging the raw data. For these
reasons, it appeared that without our help most cross data
set questions could not have been be answered on the fly, even
though they were resolvable using the data at hand.

Hidden Semantics One reason it is challenging to integrate
data from multiple sources is that the data’s semantics are
not sufficiently captured. Many details are only available
in a researcher’s head, and data transformations, both by
hand and with scripts, are often not properly documented,
such that the detailed provenance of data is lost. When
asked, many researchers agreed that they would not be able
to recreate a paper from their raw data two years later. This
makes it impossible to compare or combine results from
publication, for example to get higher statistical significance.

SQLShare helps resolve these issues by making it easy for
researchers to tag and add metadata to datasets, including
calibration parameters. In our own exploration of the data,
we used SQLShare to compute some aggregates such as “At
what stations and depths were the most water samples col-
lected using Niskin bottles?”, thereby gaining insight as to
how much and which types data was collected during the
cruise. One would normally have to develop a custom R or
Python script to access this information, but with the exper-
imental metadata stored in a database, this information is
“only a query away”. Additionally, SQLShare’s view-oriented
strategy documents data transformations so that they can be
scrutinized after the fact. Repeating a scientists’ analysis or
recomputing it with updated data requires only re-executing
the SELECT * FROM view query.

7.3 The role of interactivity
The availability of our interactive tools changed the nature
of the meeting from “planning” to “doing.”

Interactive hypothesis generation and testing For one
of the first queries, a PI and her student requested a plot of
total virus counts as a function of salinity. With the scientists
directing us to the relevant datasets, we computed the join
in SQLShare and generated a graph in Sage, which showed a
strong linear anti-correlation—viruses apparently prefer less
salty water. The scientist then called over another PI and her
student, who had generated profiles counting specific types
of virus using a different methodology. We joined the derived
data with his data, and then we visualized each individual
species against the total virus, without finding a significant

relationship. Next, a dataset of the total bacteria counts from
a third lab was joined, and this time the graph showed a
strong positive correlation, with a few off-diagonal points
that had proportionally ‘extra’ virus. Without the interactive
visualization tools, the analysis would likely have stopped at
posing the initial question, and working out the relationships
would probably have been deferred until after the meeting
and taken place over email, possibly over days. In contrast,
in a matter of five minutes with our tools, three PIs and
their students had integrated data, discovered two interesting
relationships between variables, tested and discarded three
other relationships, and identified at least one regime—the
‘extra’ virus counts—for further investigation.

Interactive quality control Not uncommonly, we noticed
that a question could not be answered because data was not
collected during the trip or not yet uploaded to SQLShare.
In other cases, we detected a mistake in the query during
the visualization process because certain values did not make
sense. This happened once when a scientist imported a multi-
joined dataset into ODV. He told us that the data could not
be valid, as several stations were missing. Looking at the
query, we quickly realized that an inner join had eliminated
much of the data, and rewrote the query as an outer join.
In another case, swapped latitude and longitude (Section 5)
were found when ODV plotted the cruise in the wrong part
of the world.

Interactive interdisciplinary cross-validation. Between
breakout sessions, each group would assemble its findings and
then the leader would present them to the entire meeting. In
the morning session on the second day, the within-discipline
members of breakout compared and contrasted their find-
ings on “like” data, often integrating it in SQLShare and
visualizing the integration to present a unified (or differing)
perspective on the phenomena being studied, such as zinc
limitation (when not enough zinc is present to satisfy the
needs of certain organisms). In the afternoon session, mem-
bers of different disciplines worked together to integrate their
data and refine their findings using data of fundamentally dif-
ferent types, e.g., concentrations of about trace metals with
measurements of nutrients. The ability to quickly and easily
integrate disjoin data types together enabled joins of up to 8
different (cleaned) datasets, e.g., Query 9, and multi-variate
analysis to be conducted.

7.4 Results and lessons learned
Overall, we generated 39 derived datasets during the work-
shop, which were used actively during the workshop as well
as prepared for later analyses.

What went right:

• One concern was that the SQLShare system processing
would be a bottleneck for interactive analysis. Other suc-
cessful scientific database systems, such as the Sloan Digital
Sky Survey [10], use a carefully-engineered schema, indexes,
stored procedures, and distributed processing. In contrast,
SQLShare runs on a single Microsoft Windows Azure SQL
instance, ad hoc schema chosen by the system at runtime,
and there are no indexes. Would JOIN-intensive workloads
on SQLShare suffer as a result? Figure 8 shows the runtime
of 532 queries generated at the data synthesis workshop. A
key lesson is that in the high-variety regime, queries are fast.
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8: The runtime of the queries generated at the data
synthesis workshop. This is high-variety data, not
high-volume data, and in this regime queries are fast.
Fully 80% of queries completed within 100ms, 95%
of queries finished in under 1 s, and all queries took
less than 10 s to run.

9: This graph, part of a larger multi-variate analy-
sis, shows the relationship between zinc and cobalt
(Query 6). That that Zinc and Cobalt are generally
anti-correlated is interesting in its own right, and the
region at the lower left where Zinc is low indicates
‘Zinc stress’. The need to further explore the rela-
tionship between Zinc and Cobalt was a key finding
of this meeting.

Fully 80% of queries completed within 100 ms, 95% of queries
finished in under 1 s, and all queries took less than 10 s to
run.

• We found that the ability to integrate data from different
datasets and visualize them in real-time was indeed valu-
able. Almost every graph or result presented at the breakout
summary sessions was generated using SQLShare, and many
used one of our visualization aids as well. Query 6, the rela-
tionship between Zinc and Cobalt concentrations (Figure 9),
turned out to be a key finding of this workshop. A researcher
phrased the finding as follows: “We see an increase of Zinc
along an increasing concentration of Cobalt. Except, there’s
a departure [in the lower left], and it is found in surface
water, so the question then becomes, is this a place where
we start looking at substitution of Cobalt for Zinc? Diatoms
[which live in surface water] prefer Zinc to Cobalt, but when
they are Zinc stressed, they turn to Cobalt.”

• We found that buy-in from the lead PI was critical—
she was able to convince the scientists to use the prepared

template keys and to generate questions ahead of time. In
this first experiment, these features were important to our
success.

• The SQLShare REST interface was invaluable for the
visualization tools and for authoring the script-generated
queries used to implement advanced features like extract-
ing data from filenames, un-pivoting data in files, and data
cleaning. Without these abilities, our SQL “reaction times”
would have been much worse.

What went wrong:

• We were not able to answer every question that came up
during the workshop. This was not fundamental: principally,
it was due to a shortage of time—we could have used at
least twice as many data specialists. In other cases it was
because the data were not yet available (or so large that
the researchers had not completed uploading them when the
workshop started).

• There was occasional language mismatch. In the first
breakout session, many scientists asked for the correlation
between two variables. The lead author, busy answering
other queries, deferred this task until a break in order to
develop and debug a SQL idiom to compute the ρ2 coefficient.
It turned out the scientist just wanted a plot to visualize
the relationship—at least in this community, “correlation” is
commonly used to mean visualization.

• The standard deviation of question answering time was
high. Once practiced, we could answer many integration
queries in less than a minute. Yet, some of the queries took
longer because of data cleanup, slow UI response from SQL-
Share, or work arounds for software bugs. (For instance,
many common web clients place a 2000-character limit on
URLs. This is problematic when sending script-generated
SQL queries over 100s of columns.)

• Neither we nor the scientists were prepared for the prob-
lems of integrating -omics data. In particular, the main output
of annotated sequence data is human-generated functional
annotations. Different types of -omics are aligned against dif-
ferent databases that use different annotation techniques. As
a result, asking whether the transcriptomic data contained
a gene encoding a particular protein was an un-answerable
question—the annotations were unlikely to line up, and there
was no common ‘key’ that disparate data were joined with. At
the workshop, one participant described an alternative align-
ment method based on a clustered database5 that does have
a unified keyspace against which different types of -omics
can be joined, and hence compared. The -omics participants
at the workshop plan to adopt this approach going forward.

Future opportunities:

• Although the REST API allowed two different visual-
ization services to be developed and deployed in a single
day, they were important enough to the process to motivate
building visualization capabilities natively in SQLShare.

• In this experiment, we did not attempt to have scientists
write SQL queries themselves, but the ability to “self-serve”
is clearly desirable. A system that allows a complete novice
to walk up and write queries of a comparable complexity
to the ones we have described with no training represents
an ambitious research goal for a collaboration between the

5http://www.ncbi.nlm.nih.gov/proteinclusters

PLEASE DO NOT REDISTRIBUTE PLEASE DO NOT REDISTRIBUTE PLEASE DO NOT REDISTRIBUTE

http://www.ncbi.nlm.nih.gov/proteinclusters


DRAFT ARTICLE DRAFT ARTICLE DRAFT ARTICLE

database community, the HCI community, and the eScience
community.

• Our success was assisted by the use of top-down standards
to homogenize the data, and some up-front cleaning in the
days leading up to the event. In some situations, even these
minor luxuries are not available. A system that can achieve
similar results with zero assumptions about the data is an
important goal.

• The UI performance was more important than we antici-
pated. Even minor delays can adversely affect the experience
for the user and the experts.

• We did not have a control in this experiment; we are
not able to conclude that SQL is any more effective than
any other approach for this purpose. However, we hypoth-
esize that general purpose languages, workflow tools, and
GUI applications would struggle in this context by requiring
significant development time or by severely constraining ex-
pressiveness, or both. In future work, it would be useful to
conduct a controlled experiment to test this hypothesis.

8. RELATED WORK
Google Fusion Tables allows direct upload of data, limited
GUI-based queries, a REST API, and rich visualization ca-
pabilities. Fusion Tables shares a similar motivation with
SQLShare, but cannot express even the routine tasks we
encounter working with scientists (multi-key joins, set opera-
tors, common user-defined functions) [3].

The Sloan Digital Sky Survey [10] exposed a multi-terabyte
astronomy database over the web through public SQL in-
terfaces, and demonstrated that researchers can and will
write SQL queries. The effect the SDSS project had on the
field is difficult to overstate; a generation of astronomers
now learn SQL in their training, and thousands of papers
have been written based on accessing data through SQL.
Unlike SDSS, we are exploring scenarios where relying on
an pre-engineered schema is not feasible, typically because
the cost of developing it cannot be amortized over enough
time and use, or because the data are too diverse. SQLShare
represents an approach to achieve similar results as SDSS for
smaller-scale projects that do not have access to significant
database programming expertise.

Other public databases such as the Gene Ontology database [2]
and NCBI [7] support SQL access either through client tools
or specialize web applications. They do not allow users to
upload their own datasets.

Galaxy is a popular web-based workflow engine popular
in the life sciences that allows users to create and share
data processing pipelines. Relational algebra operators are
included in the set of algorithms available, implying that
users are interested in basic database queries. Galaxy offers
no declarative query language and no support for algebraic
optimization, making it infeasible for use in the real-time,
interactive scenario we describe in this paper. Other workflow
systems including VisTrails, Taverna, and Kepler are also
not designed for real-time pipeline authoring, and could
not automatically accommodate the unusual file formats we
encounter in practice. .

OData [8] is a standardized API for accessing and querying

data over the web. The OData API supports only basic
filtering on individual tables and cannot be used to express
joins or other non-trivial queries.

9. CONCLUSIONS
Our hypothesis was that declarative query languages could
be used to facilitate interactive, collaborative science even
without the benefit of an engineered schema. We tested this
hypothesis anecdotally by ingesting heterogeneous science
data into a web-based query-as-a-service system called SQL-
Share and participating in a research meeting with geochem-
ical oceanographers and microbial ecologists, attempting to
write queries in real-time in response to the discussion. This
experiment was a success: we received highly favorable feed-
back from the researchers, and authored 39 reusable views
representing researchers’ hypotheses. The technology and
approach fundamentally changed the meeting by allowing
scientific Q&A while the collaborators were all present to
discuss the findings, as opposed to working independently
when they returned to their labs.
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