Frieze step pattern


# Processing Power 

Jenny Orr<br>Willamette University gorr@willamette.edu

## What is Processing?

Processing is an open source programming language and environment
for people who want to create images, animations, and interactions.
[processing.org]


## When to use Processing

- Processing is great for rapidly writing small programs that involve any sort of visualization, 2D or 3D.
- Easy to:
- Create a drawing window.
- Write code without a lot of overhead.
- Read, manipulate, and save images.
- Generate animations.
- Apply transformations.
- Interact with user via key and mouse
- Convert programs to javascript for running on web.



## When Not To Use Processing

It is not recommended that you use Processing for programs that:

- Has a complex structure
- Involves large amounts of data
- Has complex user interaction.
- Is not visually oriented.

Iterated
function
system



## What Do I Do with Processing?

Art Creation

## Exploration

Scientific \& Mathematical Visualization
$\rightarrow$ Understanding


## Algorithmic Art

## What is an Algorithm?

In the logician's voice:
An algorithm is
a finite procedure,
written in a fixed symbolic vocabulary,

governed by precise instructions,
moving in discrete steps, 1, 2, 3,...,
whose execution requires no insight, cleverness, intuition, intelligence, or perspicuity,
and that sooner or later comes to an end.

From The Advent of the Algorithm, by David Berlinski

## Art Creation

Jared Tarbell, Substrate 2003, http://www.complexification.net/gallery/


Mike Field,


Firestorm 2001
http://www.math.uh.edu/~mike/ag/recent/recent.html

Roman Verostko
Cyberflower Red 2002
http://www.verostko.com/gallery.html

## Processing Art Examples

- Lots are online, e.g.
- http://processing.org/exhibition/
- http://www.openprocessing.org/
- Books:
- Generative Art, http://zenbullets.com/books.php, Matt Pearson

Diana Lange

- Form + Code, http://formandcode.com/, Casey Reas, Chandler McWilliams, LUST

Marius Watz


Orr, May 2013

## Exploration: Random Dot Stereogram



Left eye: Shift =+10
Red square appears in front of back plane.


Don't really need red color.
Shift $=+10$

## Image Manipulation



# Image Manipulation 


 ,

















 -
 -



 ตif:\%)



## Visualization of <br> Science and Math

## Phyllotaxis (Leaf Arrangement): Pine Cones, Cacti, \& Fibonacci Numbers



Red: 8 Yellow: 13 White: 21



Fibonacci Sequence:

$$
01123581321345589 \text {... }
$$

Image taken from: http://faculty.smcm.edu/sgoldstine/pinecones.html Also see:
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.html\#plants

## Phyllotaxis \& Processing

- Fibonacci Sequence: 01123581321345589 ...


"Divergence angle" = angle between leaves = 360/tau = $222.5\left(\right.$ or $\left.137.5^{\circ}\right)$ where tau=golden ratio


## Understanding Transformations and Symmetry: Frieze Patterns

The Seven Frieze Groups
Hop: t pattern, orbifold: inf inf


Spinning Hop: t2 pattern, orbifold: 22 _inf

つ Sidle: tm pattern, orbifold: *_inf_inf


คi:
Jump: mt pattern, orbifold: _inf*
 vivivivivion vivivuivivi
Step: tg pattern, orbifold:_inf_x
 Mu ulu uvou vivouvui

See FriezePatterns example (via Processing)

Spinning Jump: t2mm pattern, orbifold: *22_inf


## Symmetry \& Processing

## Hop

```
void setup() {
    icon = loadlmage("snake.png");
    w = icon.width;
    h = icon.height;
    drawHop();
}
void drawHop() {
    for (int i = 0; i < 10; i++) {
        image(icon, 0, 0);
        translate(w,0);
    }
}
```

Spinning Hop

void translateRegion() \{ pushMatrix(); image(icon, 0, 0); translate (w,0); rotateHor(); popMatrix();
\}
void rotateHor() \{
pushMatrix();
translate(w/2,h/2);
rotate(radians(180));
translate(-w/2,-h/2);
image(icon, 0, 0);
popMatrix();
\}

## Symmetry: Point Group




## Symmetry : Wallpaper Group



## Complex Numbers

- Physics: AC circuits, quantum mechanics
- Mathematics: Solutions to cubic and quartics
- Art \& Science: Fractals
- Computer Graphics Transformations:
- Complex numbers $\rightarrow$ 2D Rotations
- Quaternions $\rightarrow$ 3D Rotations
"So, progresses arithmetic sublety the end of which, as is said, is as refined as it is useless." Cardano (1501-1576)


## Complex Numbers

Rectangular Coordinates:

$$
z=P(x, y)=x+i y, \quad \text { where } i=\sqrt{-1}
$$

## Polar Coordinates:

$$
\begin{aligned}
z & =P(r, \theta)=r e^{i \theta} \\
& =r(\cos \theta+i \sin \theta)
\end{aligned}
$$



Complex Plane

## Polynomiography

Formally, polynomiography is the art and science of visualization in approximation of zeros of polynomials. This visualization is via fractal and non-fractal images created based on the mathematical convergence properties of iteration functions. [http://www.polynomiography.com/about.php]

$P(z)=-z^{4}+1$
Roots: 1, -1, i, $-i$

## Polynomiography



$$
P(z)=-z^{6}+(-1+i) z^{4}+(1+i) z+(1+i) \quad \text { Orr, May } 2013
$$

$$
P(z)=-z^{8}+1
$$

## Fractals

Mandelbrot and Julia Sets:
Iterate: $z_{n}=z^{2}{ }_{n-1}+c$

What is happening?


## Complex Functions as Transformations

Consider:

$$
F(z)=w+z \quad \text { where } w=\text { constant }
$$

If we write

$$
\begin{aligned}
z= & z_{x}+i z_{y} \text { and } w=w_{x}+i \\
F(z) & =\left(w_{x}+i w_{y}\right)+\left(z_{x}+i z_{y}\right) \\
& =\left(w_{x}+z_{x}\right)+i\left(w_{y}+z_{y}\right) \\
& =\text { translation by w }
\end{aligned}
$$



## Complex Functions as

## Transformations

Consider:

$$
F(z)=w z \quad \text { where } w=\text { constant }
$$

If we write

$$
z=r e^{i \theta} \text { and } w=s e^{i \phi}
$$

Then


$$
F(z)=w z=\left(s e^{i \phi}\right)\left(r e^{i \theta}\right)=(s r) e^{i(\theta+\phi)}
$$

If $\phi=0, F(z)=s r e^{i \theta}=s z=s c a l e ~ b y s$
If $s=1, F(z)=r e^{i(\theta+\phi)}=z e^{i \phi}=$ rotation by $\phi$

## Example: $\mathrm{z} \rightarrow \mathrm{w}^{*} \mathrm{z}, \mathrm{w}=.5$


$-1<x<1,-1<y<1$

## Example: $z \rightarrow w^{*} z, w=2$


$-1<x<1, \quad-1<y<1$

## Example:

$$
z \rightarrow w^{*} z, w=e^{i \theta}, \theta=45^{\circ}
$$



$$
-1<x<1,-1<y<1
$$

## Example: $\mathrm{z} \rightarrow \mathrm{w}+\mathrm{z}, \mathrm{w}=.2+.4 \mathrm{i}$



$$
-1<x<1, \quad-1<y<1
$$

## Example: $z \rightarrow z^{2}$


$-1<x<1, \quad-1<y<1$

## Example: $z \rightarrow z^{5}$


$-2<x<2,-2<y<2$

## Example: $z \rightarrow z^{2}$


$-1<x<1, \quad-1<y<1$

## Example: $z \rightarrow z^{2}-2$



$$
-2<x<2, \quad-2<y<2
$$

## Example: $z \rightarrow z^{3}-1$


$-2<x<2, \quad-2<y<2$

## Example: $z \rightarrow z^{3}+1$



$$
-2<x<2, \quad-2<y<2
$$

## Example: $z \rightarrow z^{4}+1$



## Example: $\mathrm{z} \rightarrow \sqrt{z}=\sqrt{r} \mathrm{e}^{\mathrm{i} \theta / 2}$



$$
-1<x<1, \quad-1<y<1
$$

## Example: $z \rightarrow 1 / z$


$-2<x<2, \quad-2<y<2$

## Periodic Real Valued Functions on the Complex Plane

$F(z)=v$ where $z \in C$ and $v \in R$ We can choose $F$ to be periodic such as those containing terms of the form:

$\cos (a X) * \cos (b Y)$ and<br>$\sin (c X) * \sin (d Y)$



## Conclusions

- Processing is a powerful programming environment for visualization
- Can be used to
- Create art
- Understand math and science
- General exploration.

