Climate Change Effects and Adaptation Approaches in Marine and Coastal Ecosystems of the North Pacific Landscape Conservation Cooperative Region

A Compilation of Scientific Literature

Phase 1 Draft Final Report

Produced by Patricia Tillmann* and Dan Siemann† National Wildlife Federation Funded by U.S. Fish and Wildlife Service Region 1 Science Applications Program August 2011

* email: <u>tillmannp@nwf.org</u>; † email: <u>siemannd@nwf.org</u>

EXECUTIVE SUMMARY

This Phase I draft final report provides a first-ever compilation of what is known—and not known—about climate change effects on marine and coastal ecosystems in the geographic extent of the North Pacific Landscape Conservation Cooperative (NPLCC). The U.S. Fish & Wildlife Service funded this report to help inform members of the newly established NPLCC as they assess priorities and begin operations. Production of this report was guided by University of Washington's Climate Impacts Group and information was drawn from more than 250 documents and more than 100 interviews. A final report will be published in 2012 following convening of expert focus groups under Phase II of this project.

Information in this report focuses on the NPLCC region, which extends from Kenai Peninsula in southcentral Alaska to Bodega Bay in northern California west of the Cascade Mountain Range and Coast Mountains. The region contains approximately 38,200 miles ($\sim 61,500 \text{ km}$)¹ of coastline and is home to iconic salmon and orca, a thriving fish and shellfish industry, and a wide range of habitats essential for the survival of fish, wildlife, birds, and other organisms. Many of these species, habitats, and ecosystems are already experiencing the effects of a changing climate.

Carbon dioxide, temperature, and precipitation

The atmospheric concentration of carbon dioxide (CO_2) is increasing in the earth's atmosphere, leading to increases in temperature, altered precipitation patterns, and consequent effects for biophysical processes, ecosystems, and species.

- Atmospheric CO₂ concentrations have increased to ~392 parts per million (ppm)² from the pre-industrial value of 278 ppm,³ higher than any level in the past 650,000 years.⁴ By 2100, CO₂ concentrations are projected to exceed ~600 ppm and may exceed 1000 ppm.⁵ As CO₂ levels increase, a concomitant decline in ocean pH is projected for the NPLCC region,⁶ hampering calcification processes for many calcifying organisms such as pteropods,⁷ corals, and mollusks.⁸
- Annual average temperatures increased ~1-2°F (~0.6-1°C) from coastal British Columbia to northwestern California over the 20th century⁹ and 3.4°F (~1.9°C) in Alaska from 1949 to 2009.¹⁰ By 2100, the range of projected increases in the NPLCC region varies from 2.7 to 13°F (1.5-7.2°C), with the largest increases projected in Alaska.¹¹ These temperature increases will drive a rise in sea surface temperature and contribute to declining oxygen solubility in seawater,¹² species range shifts,¹³ and potential uncoupling of phenological interdependencies among species.¹⁴
- Seasonal precipitation varies but is generally wetter in winter. Cool season precipitation (Oct-March) increased 2.17 inches (5.51 cm) in Alaska from the 1971-2000 to 1981-2010 period.¹⁵ In Washington and Oregon winter precipitation (Jan-March) increased 2.47 inches (6.27 cm) from 1920 to 2000.¹⁶ In California, winter precipitation increased between 1925 and 2008,¹⁷ while in British Columbia, both increases and decreases in winter precipitation were observed, depending on the time period studied.¹⁸ Over the 21st Century, winter and fall precipitation is projected to increase 6-11% in BC and 8% in Washington and Oregon, while summer precipitation is projected to decrease (-8 to -13% in BC and -14% in WA and OR).¹⁹ In southeast Alaska, however, warm season precipitation is projected to increase 5.7%.²⁰ Projected increases in winter rainfall, declining snow accumulation²¹ and glacial extent,²² and decreased summer precipitation (where occurring) will shift the frequency, volume,²³ and timing²⁴ of freshwater inflow to marine

i

systems. Coastal areas with enhanced riverine input such as the Columbia River estuary will see greater stratification associated with increases in precipitation,²⁵ a condition that exacerbates low-oxygen conditions associated with harmful algal blooms and hypoxic waters.²⁶

Impacts of climate change on marine and coastal systems

Increases in CO_2 and air temperature, combined with changing precipitation patterns, are already altering conditions and processes in marine and coastal ecosystems. These trends are projected to continue.

- The oceans are increasing in acidity. Increasing atmospheric CO₂ concentrations have caused global ocean pH to decline from 8.2 to 8.1 since pre-industrial times, increasing the ocean's acidity by approximately 26%.²⁷ pH declines in the NPLCC region are generally consistent with those observed globally, although some coastal areas such as Hood Canal (WA) report significantly lower pH (less than 7.6 in 2008).²⁸ By the end of this century, global surface water pH is projected to drop to approximately 7.8, increasing the ocean's acidity by about 150% relative to the beginning of the industrial era.²⁹ If atmospheric CO₂ levels reach 550 ppm, pH in the NPLCC region is projected to decline approximately 0.14 units³⁰ and the saturation state of aragonite will approach the critical threshold for undersaturation ($\Omega < 1$), below which the shells of some marine organisms may begin to dissolve or have difficulty forming.³¹ Ocean water detrimental to shell-making has already been observed in shallow waters from Queen Charlotte Sound (BC) south to Baja California.³² Aragonite-shelled pteropods, which are prey for salmon³³ and other fish,³⁴ appear particularly vulnerable to continued ocean acidification.³⁵
- Sea surface temperatures are rising. Global mean sea surface temperature (SST) increased approximately 1.1°F (0.6°C) since 1950.³⁶ By 2050, an increase in winter SST of 1.8 to 2.9°F (1.0-1.6°C) is projected for most of the northern Pacific Ocean (compared to 1980-1999).³⁷ Warmer SST contributes to sea level rise, increased storm intensity, and greater stratification of the water column.³⁸ Increased SST is also associated with species range shifts,³⁹ altered nutrient availability and primary production,⁴⁰ and changes in algal, plankton and fish abundance in high-latitude oceans.⁴¹
- Storm intensity and extreme wave heights are projected to increase. Off the Oregon and Washington coasts, the heights of extreme storm waves increased as much as eight feet since the mid-1980s and deliver 65% more force when they come ashore.⁴² During the 21st century, extratropical storms are likely to become more intense in the NPLCC region.⁴³ This will combine with higher sea levels to increase storm surges, the height of extreme waves⁴⁴ and the frequency of extreme events.⁴⁵ Increased extreme wave heights and more intense storms are projected to increase beach and bluff erosion⁴⁶ and lead to shoreline retreat,⁴⁷ loss of coastal habitat,⁴⁸ and damage to coastal infrastructure.⁴⁹
- Sea levels are rising, but the relative effect varies by location. Since the end of the 19th century global sea levels have risen approximately 6.7 inches (17 cm).⁵⁰ In the NPLCC region, however, relative sea level change from 1898 to 2007 ranges from -0.67 to +0.23 inches/yr (-1.7 to 0.575 mm/yr).⁵¹ Relative sea level rise in the NPLCC region is less than the global average at most monitoring stations because of localized increases in land elevation as a result of glacier recession, plate tectonics, and/or sediment accretion.⁵² By the end of the 21st century, global sea level is projected to increase 5.1 to 70.0 inches (13-179 cm) compared to the end of the 20th

century.⁵³ In the NPLCC region by 2100, relative change in sea levels are projected to range from -25.2 inches (-64 cm) to +55 inches (+139.7 cm).⁵⁴ Sea level is projected to rise in British Columbia and parts of Washington, Oregon, and California,⁵⁵ while sea level is projected to decline or remain relatively stable in southcentral and southeast Alaska and the northwest Olympic Peninsula (WA).⁵⁶ Rising sea level often results in loss of nearshore or coastal habitat⁵⁷ and harm to dependent species.⁵⁸

• Recent anomalous hypoxic events in the California Current Ecosystem may be characteristic of future change. Severe hypoxia, corresponding to dissolved oxygen (DO) levels ranging from 0.21 to 1.57 mL/L, was observed off the central Oregon coast in 2002.⁵⁹ Dungeness crab surveys showed mortality rates of up to 75% in some regions during this period.⁶⁰ In 2006 off the Washington coast, the lowest DO concentrations to-date (<0.5 mL/L) were recorded at the inner shelf.⁶¹ During an anoxic event in 2006 off the Oregon coast, surveys revealed the complete absence of all fish from rocky reefs⁶² and near-complete mortality of macroscopic benthic invertebrates.⁶³ While anomalous events such as these are consistent with potential climate-induced changes in coastal systems, it has not been shown that climate change is the cause of the anomalies.⁶⁴

Implications of climate change for ecosystems, habitats, and species

Climate change effects, independently or in combination, are fundamentally altering ocean ecosystems.⁶⁵ Effects on habitats (habitat loss and transition) and species (invasive species interactions, range shifts and phenological decoupling) are highlighted here.

Coastal Erosion and Habitat Loss

Rising sea-level and increases in storms and erosion are projected to result in significant habitat impacts. In Alaska, low-lying habitats critical to the productivity and welfare of coastal dependent species could be lost or degraded,⁶⁶ including staging areas that support millions of shorebirds, geese, and ducks.⁶⁷ As sea level rises along Puget Sound's armored beach shorelines, most surf smelt spawning habitat is likely to be lost by 2100.⁶⁸ In Skagit Delta marshes (WA), the rearing capacity for threatened juvenile Chinook salmon is projected to decline by 211,000 fish with 18 inches (45 cm) of sea level rise.⁶⁹

Habitat loss due to sea level rise is likely to vary substantially depending on geomorphology and other factors. In Washington and Oregon, analysis of coastal habitats under 27.3 inches (0.69 m) of sea level rise projects loss of two-thirds of low tidal areas in Willapa Bay and Grays Harbor and a loss of 11 to 56% of freshwater tidal marsh in Grays Harbor, Puget Sound, and Willapa Bay.⁷⁰ Much of these habitats are replaced by transitional marsh.⁷¹ However, the Lower Columbia River may be fairly resilient to sea level rise because losses to low tidal, saltmarsh, and freshwater tidal habitats are minimized (-2%, -19%, -11%, respectively), while gains in transitional areas are substantial (+160%).⁷²

Invasive Species, Range Shifts, and Altered Phenology

Climate change will affect species in varying ways. Ocean acidification significantly and negatively impacts survival, calcification, growth and reproduction in many marine organisms, but thus far, has no significant effect on photosynthesis.⁷³ Among calcifying organisms, corals, calcifying algae, coccolithophores, and mollusks are negatively affected, while crustaceans and echinoderms are positively affected.⁷⁴ Warmer waters are likely to promote increased populations of Pacific salmon in Alaska while promoting decreased populations elsewhere in the NPLCC region.⁷⁵ If oxygen levels decline⁷⁶ and coastal

iii

upwelling strengthens as some studies project,⁷⁷ oxygenated habitat will be lost.⁷⁸ A few species, such as sablefish and some rock fishes, tolerate low-oxygen conditions and may expand their territory.⁷⁹ However, most species will be forced to find shallower habitat or perish.⁸⁰ Overall, smaller specimens seem to be the winners under low-oxygen conditions, as they outcompete larger organisms due to their advantageous body-mass to oxygen-consumption ratio.⁸¹

Many sea and shorebirds have medium or high vulnerability to climate change.⁸² These include the Aleutian Tern, Kittlitz's Murrelet,⁸³ beach-nesting black oystercatchers,⁸⁴ and the Cassin's auklet.⁸⁵ For coastal birds, loss of habitat and food sources are the largest climate change-related concerns.⁸⁶ Reproductive failure among seabirds has been documented as a result of changes in marine productivity, often observed during El Niño years when sea surface temperatures are warmer than average.⁸⁷ Population recovery is less likely if climate change results in catastrophic events that are more frequent, more intense, or of longer duration.⁸⁸

Climate change may enhance environmental conditions such that some species are able to survive in new locations, known invasive species expand into new territories, and species that currently are not considered invasive could become invasive, causing significant impacts.⁸⁹ Invasive and non-native species that appear to benefit from climate change include Spartina, Japanese eelgrass, and New Zealand mud snail.⁹⁰

In response to warming temperatures and changing currents, many marine species are expanding their ranges toward the poles.⁹¹ The abundance and distribution of jumbo squid in the NPLCC region increased between 2002 and 2006, with sightings as far north as southeast Alaska.⁹² Loggerhead turtle, brown pelican, and sunfish are reported recent arrivals to the northern Washington coast.⁹³

Climate change may also lead to significant phenological decoupling, such as occurred in the Pacific Northwest in 2005 when the upwelling season occurred three months later than usual, resulting in a lack of significant plankton production until August (rather than the usual April-May time period).⁹⁴ The delay was accompanied by recruitment failure among plankton-reliant rockfish species, low survival of coho and Chinook salmon, complete nesting failure by Cassin's Auklet, and widespread deaths of other seabirds (common murres, sooty shearwaters).⁹⁵ Similar mismatches also occurred in 2006 and 2007 when upwelling began early but was interrupted at a critical time (May-June).⁹⁶

As a result of these effects, novel assemblages of organisms will inevitably develop in the near future due to differing tolerances for changes in environmental conditions.⁹⁷ These novel communities will have no past or present counterparts and are likely to present serious challenges to marine resource managers.⁹⁸

Adaptation to climate change for marine and coastal systems

Given that CO₂ concentrations will continue to increase and exacerbate climate change effects for the foreseeable future,⁹⁹ adaptation is emerging as an appropriate response to the unavoidable impacts of climate change.¹⁰⁰ Adaptive actions reduce a system's vulnerability,¹⁰¹ increase its capacity to withstand or be resilient to change,¹⁰² and/or transform systems to a new state compatible with likely future conditions.¹⁰³ Adaptation actions typically reflect three commonly cited tenets: (1) remove other threats and reduce non-climate stressors that exacerbate climate change effects;¹⁰⁴ (2) establish, increase, or adjust protected areas, habitat buffers, and corridors;¹⁰⁵ and, (3) increase monitoring and facilitate management under uncertainty, including scenario-based planning and adaptive management.¹⁰⁶

Adaptation actions may occur in legal, regulatory, or decision-making processes, as well as in on-theground conservation activities.¹⁰⁷ For example, to counteract loss of coastal habitat due to erosion and sea level rise, options include removing shoreline hardening structures,¹⁰⁸ enhancing sediment transport,¹⁰⁹ establishing ecological buffer zones,¹¹⁰ and acquiring rolling easements.¹¹¹ To manage invasive species, whose spread is exacerbated by increased sea surface temperatures and other climate-related effects, options include restoring native species, physically removing invasive species, and strengthening regulatory protections against invasive species introduction.¹¹² Decision-makers may also create or modify laws, regulations, and policies governing coastal management to promote living shorelines that protect coastal property and habitat,¹¹³ incorporate climate projections into land use planning to safeguard coastal habitats,¹¹⁴ and implement coastal development setbacks to address rising sea levels and increased storm intensity, maintain natural shore dynamics, and minimize damage from erosion.¹¹⁵

Although uncertainty and gaps in knowledge exist, sufficient scientific information is available to plan for and address climate change impacts now.¹¹⁶ Implementing strategic adaptation actions early may reduce severe impacts and prevent the need for more costly actions in the future.¹¹⁷ To identify and implement adaptation actions, practitioners highlight four broad steps:

- 1. Assess current and future climate change effects and conduct a vulnerability assessment.¹¹⁸
- 2. Select conservation targets and a course of action that reduce the vulnerabilities and/or climate change effects identified in Step 1.¹¹⁹
- 3. Measure, evaluate, and communicate progress through the design and implementation of monitoring programs.¹²⁰
- 4. Create an iterative process to reevaluate and revise the plan, policy, or program, including assumptions.¹²¹

Adaptive approaches to addressing climate change impacts will vary by sector and management goal, across space and time, and by the goals and preferences of those engaged in the process.¹²² In all cases, adaptation is not a one-time activity, but is instead a continuous process, constantly evolving as new information is acquired and interim goals are achieved or reassessed.¹²³ Ultimately, successful climate change adaptation supports a system's capacity to maintain its past or current state in light of climate impacts or transform to a new state amenable to likely future conditions.¹²⁴

¹⁴ NABCI. (2010, p. 7)

V

¹ USFWS. (2010)

² NOAA. (2011c)

³ Forster et al. (2007, p. 141)

⁴ CIG. (2008).

⁵ Meehl et al. (2007, p. 803)

⁶ Feely et al. (2009, Table 2, p. 46). By 2100, the projected declines are associated with a doubling (~550 ppm) or tripling (~830 ppm) of atmospheric CO₂ compared to ~1750: -0.14 to -0.15 or -0.30 to -0.31, respectively. ⁷ Hauri et al. (2009, p. 67-68)

⁸ Kroeker et al. (2010, p. 1424, 1427)

⁹ Mote (2003, p. 276); Butz and Safford (Butz and Safford 2010, 1)

¹⁰ U.S. Global Change Research Program (2009, p. 139)

¹¹ For AK, Karl, Melillo and Peterson. (2009, p. 139). For WA and OR, CIG. (2008, Table 3) and Mote et al. (2010, p. 21). For CA, California Natural Resources Agency. (2009, p. 16-17) and PRBO. (2011, p. 8).

¹² California Natural Resources Agency (2009, p. 66); Levin et al. (2009, p. 3568); Najjar et al. (2000, p. 226)

¹³ Cheung et al. (2010, p. 31); IPCC. (2007e, p. 8); Karl, Melillo, and Peterson. (2009, p. 144)

¹⁵ This information was obtained from and approved by Tom Ainsworth and Rick Fritsch (Meteorologists, NOAA/National Weather Service, Juneau) on June 10, 2011. Data for 1971-2000 are official data from the National Climatic Data Center (NCDC). Data for 1981-2010 are preliminary, unofficial data acquired from Tom Ainsworth and Rick Fritsch (Meteorologists, NOAA/National Weather Service, Juneau) on May 12, 2011. The NCDC defines a climate normal, in the strictest sense, as the 30-year average of a particular variable (e.g., temperature).

¹⁶ Mote (2003, p. 279)

¹⁷ Killam et al. (2010, p. 4)

¹⁸ Pike et al. (2010, Table 19.1, p. 701)

¹⁹ For BC, BC Ministry of Environment. (2006, Table 10, p. 113); For OR and WA, Mote and Salathé, Jr. (2010, p. 42-44); Seasonal precipitation projections for California were not available.

²⁰ Alaska Center for Climate Assessment and Policy. (2009, p. 31).

²¹ Elsner et al. (2010, Table 5, p. 244); Pike et al. (2010, p. 715); PRBO. (2011, p. 8)

²² AK Department of Environmental Conservation (DEC). (2010, p. 2-3); Chang and Jones. (2010, p. 84); Howat et al. (2007, p. 96); Pike et al. (2010, p. 716)

²³ AK DEC. (2010, p. 2-3, 5-2); Chang and Jones. (2010, p. 94); Mantua, Tohver and Hamlet. (2010, p. 204-205); Pike et al. (2010, p. 719); Stewart. (2009, p. 89); Tohver and Hamlet. (2010, p. 8) ²⁴ Chang and Jones. (2010, p. 192); Pike et al. (2010, p. 719); Stewart. (2009, p. 89)

- ²⁵ Peterson, W. & Schwing, F. (2008, p. 56)
- ²⁶ Levin et al. (2009, p. 3567)
- ²⁷ Orr et al. (2005); Feely, Doney and Cooley. (2009)

²⁸ Feely et al. (2010, Table 1, p. 446).

²⁹ Feely et al. (2009, p. 37)

 30 Feely et al. (2009, Table 2, p. 46). The projected decline is associated with a doubling of atmospheric CO₂

compared to ~1750, to ~550 ppm by 2100. With a tripling of atmospheric CO₂ (~830 ppm by 2100 compared to

- ~1750), pH is projected to decline -0.30 to -0.31 in North Pacific Ocean waters.
- ³¹ Feely et al. (2009, p. 39); Hauri et al. (2009, p. 67-68)
- ³² Feely, Sabine, et al. (2008, p. 1491)
- ³³ Sigler et al.(2008, p. 7)
- ³⁴ Sigler et al.(2008, p. 12)
- ³⁵ Hauri et al. (2009, p. 67-68); Sigler et al.(2008, p. 12)
- ³⁶ Nicholls et al. (2007, p. 320)
- ³⁷ Overland and Wang. (2007, Fig. 2b, p. 7)
- ³⁸ Hoegh-Guldberg and Bruno. (2010, p. 1524)
- ³⁹ IPCC. (2007e, p. 8)
- ⁴⁰ Hoegh-Guldberg and Bruno. (2010, p. 1524)
- ⁴¹ IPCC. (2007e, p. 8)
- ⁴² OCMP. (2009, p. 66)
- ⁴³ Field et al. (2007, p. 627)
- ⁴⁴ Field et al. (2007, p. 627)
- ⁴⁵ Hoffman. (2003, p. 135)
- ⁴⁶ Bauman et al. (2006); OCMP. (2009)
- ⁴⁷ OCMP. (2009, p. 17)

⁴⁸ AK State Legislature. (2008); Brown and McLachlan. (2002, p. 62); Littell et al. (2009); Nicholls et al. (2007, p. 325-326).

⁴⁹ OCMP. (2009)

- ⁵⁰ IPCC. (2007f, p. 7)
- ⁵¹ NOAA. (2007)

⁵² B.C. Ministry of Environment. (2007, p. 26); Bornhold. (2008, p. 6); Mote et al. (2008)

⁵³ Grinsted, Moore and Jevrejeva. (2009, Table 2, p. 467); IPCC. (2007c, Table 3.1, p. 45); Meehl et al. (2005, p.

1770-1771); Rahmstorf. (2007, p. 369); Vermeer and Rahmstorf. (2009, Table 1, p. 21530-21531).

⁵⁴ AK DEC. (2010, p. 2-4); Bornhold (2008, Table 1, p. 8); CA Natural Resources Agency. (2009, p. 18); Mote et al. (2008); Ruggiero et al. (2010, p. 218)

vi

⁵⁵ Bornhold (2008, Table 1, p. 8); CA Natural Resources Agency. (2009, p. 18); Mote et al. (2008); Ruggiero et al. (2010, p. 218) ⁵⁶ AK DEC. (2010, p. 2-4); Mote et al. (2008) ⁵⁷ AK State Legislature. (2008, p. 91); Glick, Clough and Nunley. (2007); Philip Williams and Associates, Ltd. (2009) 58 ATT AK State Legislature. (2008, p. 91); Krueger et al. (2010, p.176) ⁵⁹ Grantham et al. (2004, p. 750) ⁶⁰ Grantham et al. (2004, p. 750) ⁶¹ Connolly et al. (2010, p. 1, 8) ⁶² Chan et al. (2008, p. 920) ⁶³ Chan et al. (2008, p. 920) ⁶⁴ PISCO. (2009) ⁶⁵ Hoegh-Guldberg and Bruno. (2010, p. 1523) ⁶⁶ AK State Legislature. (2008, p. 91). Report by the Alaska State Legislature, available online at http://www.housemajority.org/coms/cli/cli final report 20080301.pdf (last accessed 12.14.2010). ⁶⁷ AK State Legislature. (2008, p. 91) ⁶⁸ Krueger et al. (2010, p.176)
⁶⁹ Martin and Glick. (2008, p. 15). The authors cite Hood, W.G. (2005) for this information. ⁷⁰ DU. (2010a); DU. (2010c); DU. (2010d) ⁷¹ DU. (2010a); DU. (2010c); DU. (2010d) ⁷² DU. (2010b) ⁷³ Kroeker et al. (2010, p. 1424) ⁷⁴ Kroeker et al. (2010, p. 1424) ⁷⁵ ISAB. (2007, p. 64) ⁷⁶ Whitney, Freeland and Robert. (2007) ⁷⁷ Snyder et al. (2003, p. 8-4); Wang, Overland and Bond. (2010, p. 265) ⁷⁸ Whitney, Freeland and Robert. (2007, p. 197) ⁷⁹ Whitney, Freeland and Robert. (2007, p. 197) ⁸⁰ Whitney, Freeland and Robert. (2007, p. 197) ⁸¹ Ekau et al. (2010, p. 1690) ⁸² NABCI. (2010, p. 8) ⁸³ NABCI. (2010, p. 8) ⁸⁴ NABCI. (2010, p. 8) ⁸⁵ Wolf et al. (2010, p. 1930) ⁸⁶ NABCI. (2010, p. 8) ⁸⁷ NABCI. (2010, p. 6) ⁸⁸ NABCI. (2010, p. 6-7) ⁸⁹ U.S. EPA. (2008, p. 2-14) ⁹⁰ Boe et al. (2010); Davidson et al. (2008); Mach, Wyllie-Echeverria and Rhode Ward. (2010) ⁹¹ Field et al. (2007, p. 142). The authors cite Perry et al. (2005) for this information. ⁹² Field et al. (2007)
⁹³ Papiez. (2009, p. 17) (2009) ⁹⁴ Peterson, W. & Schwing, F. (2008, p. 45) 95 Peterson, W. & Schwing, F. (2008, p. 54) ⁹⁶ Peterson, W. & Schwing, F. (2008, p. 45) ⁹⁷ Hoegh-Guldberg and Bruno. (2010, p. 1526) ⁹⁸ Hoegh-Guldberg and Bruno. (2010, p. 1526-1527) ⁹⁹ ADB. (2005, p. 7) ¹⁰⁰ Gregg et al. (2011, p. 30) ¹⁰¹ Gregg et al. (2011, p. 29) ¹⁰² Glick et al. (2009, p. 12) ¹⁰³ Glick et al. (2009, p. 13); U.S. Fish and Wildlife Service. (2010, Sec1:16) ¹⁰⁴ Gregg et al. (2011); Lawler (2009); Glick et al. (2009) ¹⁰⁵ Gregg et al. (2011); Lawler (2009); Glick et al. (2009)

¹⁰⁶ Gregg et al. (2011); Lawler (2009); Glick et al. (2009) ¹⁰⁷ Gregg et al. (2011); Heinz Center. (2008); Littell et al. (2009) ¹⁰⁸ U.S. EPA. (2007, p. 332); U.S. EPA. (2009, p. 12) ¹⁰⁹ NOAA. (2010, p. 83) ¹¹⁰ NOAA. (2010, p. 85) ¹¹¹ Kling and Sanchirico. (2009, p. 46) ¹¹² Kling and Sanchirico. (2009, p. 41); U.S. EPA. (2009, p. 16) ¹¹³ NOĂA. (2010, p. 80) ¹¹⁴ U.S. EPA. (2009, p. 17) ¹¹⁵ U.S. AID. (2009, p. 98) ¹¹⁶ Littell et al. (2009) ¹¹⁷ Binder. (2010, p. 355) ¹¹⁸ Gregg et al. (2011); Glick et al. (2009); Heller & Zavaleta (2009); NOAA (2010a); U.S. AID. (2009); CIG (2007); ADB (2005); Pew Center (2009) ¹¹⁹ Gregg et al. (2011); Glick et al. (2009); Heller & Zavaleta (2009); NOAA (2010a); U.S. AID. (2009); CIG (2007); Pew Center (2009) ¹²⁰ Gregg et al. (2011); Glick et al. (2009); Heller & Zavaleta (2009); NOAA (2010a); U.S. AID. (2009); CIG (2007); ADB (2005) ¹²¹ Gregg et al. (2011); Glick et al. (2009); NOAA (2010a); U.S. AID. (2009); CIG (2007); ADB (2005) ¹²² Gregg et al. (2011); Littell et al. (2009) ¹²³ Littell et al. (2009)

¹²⁴ Glick et al. (2011a)

CONTENTS

EXECUTIVE SUMMARY	i
CONTENTS	ix
List of tables, figures, boxes, and case studies	xiv
List of frequently used acronyms and abbreviations	xviii
PREFACE	xix
Production and methodology	xix
Description of synthesis documents utilized	xx
How to use this document	xx
Acknowledgements	xx
I. INTRODUCTION	1
Description of NPLCC	1
Organization of report	2
Definitions for marine and coastal environments	2
II. BACKGROUND: CO2 CONCENTRATIONS, TEMPERATURE, AND PRECIPITAT	ION
DRIVERS	5
1. Carbon dioxide (CO ₂) concentrations – global observed trends and future projection	<i>ns</i> 7
Observed Trends	7
Future Projections	9
2. Temperature – global and regional observed trends and future projections	10
Observed Trends	
Future Projections	16
3. Precipitation – global and regional observed trends and future projections	20
Observed Trends	
Future Projections	
Information Gaps	
III. MAJOR CLIMATE IMPACTS ON MARINE AND COASTAL ENVIRONMENTS	
1. Ocean acidification	
Definition and causes of ocean acidification	
Observed Trends	
Future Projections	
Information Gaps	
2. Increasing Sea Surface Temperature (SST)	
Definition and causes of increasing sea surface temperature	
Observed Trends	
Future Projections	
Information Gaps	
3. Altered Hydrology	
Information Gaps	
4. Altered ocean currents	51
Definition and causes of altered ocean currents	51
Observed Trends	
Future Projections	

		Information Gaps	
	5.	Altered frequency and severity of storms	
		Definition and causes of altered frequency and severity of storms	
		Observed Trends	
		Future Projections	
		Information Gaps	
	6.	Sea level rise (SLR)	60
		Definition and causes of sea level rise	
		Observed Trends	
		Future Projections	
		Information Gaps	
	7.	Altered patterns of coastal upwelling	78
		Definition and causes of altered patterns of coastal upwelling	
		Observed Trends	
		Future Projections	
		Information Gaps	
	8.	Altered patterns of coastal hypoxia and anoxia	
		Definition and causes of altered patterns of coastal hypoxia and anoxia	
		Observed Trends	
		Future Projections	
		Information Gaps	
IV.	Ι	MPLICATIONS FOR MARINE AND COASTAL ECOSYSTEMS	
	1.	Altered nutrient cycling	97
		Observed Trends	
		Future Projections	
		Information Gaps	
	2.		
		Observed Trends	
		Future Projections	
		Information Gaps	
	3.	Altered food web dynamics	
		Observed Trends	
		Future Projections	
		Information Gaps	
	4.	Multiple stressors and thresholds: Discussion	110
		Information Gaps	
V.	Ι	MPLICATIONS FOR COASTAL NEARSHORE HABITATS & ECOSYSTEMS	
	1.	Altered patterns of coastal erosion and increased coastal squeeze	114
		Observed Trends	
		Future Projections	
		Information Gaps	
	2.		
		Observed Trends	
		Future Projections	

		Information Gaps	120
	3.	Habitat loss, degradation, and conversion	121
		Observed Trends	121
		Future Projections	121
		Information Gaps	130
VI.	Ι	MPLICATIONS FOR SPECIES, POPULATIONS, & COMMUNITIES	131
	1.	Shifts in species range and distribution	132
		Observed Trends	132
		Future Projections	134
		Information Gaps	135
	2.	Altered phenology and development	137
		Observed Trends	137
		Future Projections	139
		Information Gaps	140
	3.	Shifts in community composition, competition, & survival	141
		Observed Trends	141
		Future Projections	144
		Information Gaps	145
	4.	Altered interaction with non-native & invasive species	146
		Observed Trends	
		Future Projections	149
		Information Gaps	149
VII.	Ι	MPLICATIONS FOR KEY FISH, WILDLIFE, PLANTS, PLANKTON, & SHELLFISH	150
	1.	Sea and shorebirds	151
		Observed Trends	151
		Future Projections	153
		Information Gaps	155
	2.	Anadromous fish – Pacific lamprey (Lampetra tridentata)	156
		Observed Trends	156
		Future Projections	156
		Information Gaps	156
	3.	Anadromous fish – Pacific salmon (Oncorhynchus spp.)	157
		Observed Trends	157
		Future Projections	160
		Information Gaps	162
	4.	Shellfish	164
		Observed Trends	164
		Future Projections	166
		Information Gaps	167
	5.	Eelgrass	168
		Observed Trends	168
		Future Projections	169
		Information Gaps	170
	6.	Plankton	171

	Observed Trends	172
	Future Projections	172
	Information Gaps	173
VIII.	ADAPTING TO THE EFFECTS OF CLIMATE CHANGE IN THE MARINE AND COAST	AL
ENV	IRONMENT	174
]	1. Framework for adaptation actions	175
	General Approach to Adaptation Action	175
	Specific Planning and Management Approaches to Adaptation Action	176
	2. Common tenets of adaptation action	
3	3. Climate adaptation actions – information gathering and capacity building	181
	Conduct/gather additional research, data, and products	
	Create/enhance technological resources	181
	Conduct vulnerability assessments and studies	182
	Conduct scenario planning exercises	183
	Increase organizational capacity	184
	Create/host adaptation training and planning workshops	184
	Provide new job training for people whose livelihoods are threatened by climate change	184
	Create new institutions (training staff, establishing committees)	184
	Coordinate planning and management across institutional boundaries	184
	Invest in/enhance emergency services planning and training	185
	Create stakeholder engagement processes	185
	Increase/improve public awareness, education, and outreach efforts	186
2	4. Climate adaptation actions – Monitoring and planning	187
	Develop climate change indicators	187
	Evaluate existing monitoring programs for wildlife and key ecosystem components	188
	Incorporate predicted climate change impacts into species and land management	188
	Develop dynamic landscape conservation plans	189
	Changes to land use planning and zoning	189
	Create a regional sediment management (RSM) plan	190
	Integrate coastal management into land use planning	190
	Community planning	191
	Ensure that wildlife and biodiversity needs are considered as part of the broader societal	
	adaptation process	192
4	5. Climate adaptation actions – infrastructure and development	193
	Make infrastructure resistant or resilient to climate change	193
	Create or modify shoreline management measures	194
	Living shorelines	194
(5. Climate adaptation actions – governance, policy, and law	196
	Managed retreat of built infrastructure, relocation of people/communities	196
	Develop a disaster preparedness plan	196
	Maintain adequate financial resources for adaptation	196
	Develop/implement adaptive management plans	197
	Review existing laws, regulations, and policies	197
	Create new or enhance existing policy	197

	Create permitting rules that constrain locations for landfills, hazardous waste dumps, mine	
	tailings, and toxic chemical facilities	
	Setbacks	
	Rolling easements	199
	7. Climate adaptation actions – species and habitat conservation, restoration, protection and	
	natural resource management	
	Maintain shorelines	
	Maintain sediment transport	
	Maintain water quality	
	Preserve habitat for vulnerable species	
	Manage invasive species in a changing climate	
	8. Status of adaptation strategies and plans in the states, provinces, and selected tribal nations	
	the NPLCC	211
	Alaska	211
	Yukon Territory	211
	British Columbia	212
	Washington	213
	Jamestown S'Klallam Tribe	213
	Swinomish Indian Tribal Community	213
	Tulalip Tribe	214
	Oregon	215
	Coquille Tribe	215
	California	216
	Yurok Tribe	216
	West Coast Governor's Agreement	217
IX.	NEXT STEPS	218
Х.	APPENDICES	219
	1. Key Terms and Definitions	219
	2: SRES Scenarios and Climate Modeling	228
	3. Major Climate Patterns in the NPLCC: ENSO and PDO	231
	4. Sea Level Affecting Marshes Model (SLAMM): Limitations, Improvements, & Alternatives.	234
	5. Resources for Adaptation Principles and Responses to Climate Change	
	6. List of Reviewers and Interviewees	
XI.	BIBLIOGRAPHY	241

List of tables, figures, boxes, and case studies

FIGURES

Figure 1. This diagram illustrates shoreline boundaries as defined by different states as well as seaward boundaries
Figure 2. General marine habitat types and associated tidal influence
Figure 3. Public land ownership within the North Pacific Landscape Conservation Cooperative (NPLCC).
Figure 4. Jan-Dec Global Mean Temperature over Land & Ocean
Figure 5. Historical average (1916-2003) winter temperature in the Pacific Northwest
Figure 6. Solid lines are multi-model global averages of surface warming (relative to 1980–1999) for the scenarios A2, A1B and B1, shown as continuations of the 20th century simulations
Figure 7. Changes in (A) mean annual temperature and (B) temperature seasonality, averaged over 16 GCMs, A1B scenario, for 2070-2099 (1971-2000 baseline)
Figure 8. A sample of the impacts and potential feedbacks in oceans and coastal systems from greenhouse gas emissions
Figure 9. Ocean acidification
Figure 10. Changes in global average surface pH and saturation state with respect to aragonite in the Southern Ocean under various SRES scenarios
Figure 11. Differences between average temperature, salinity (part per thousand), density, and dissolved oxygen profiles at NH-85 (85 nm, 157 km, off Newport) for two periods
Figure 12. Map of the North Pacific Ocean showing major currents
Figure 13. Alongshore varying rates of relative sea level (RSL) as determined by three methods
Figure 14. Global mean sea level evolution over the 20th and 21st centuries
Figure 15. Primary physical processes in the California Current System (CCS) in summer
Figure 16. Schematic diagram illustrating the mechanisms underlying the formation of hypoxia experienced by benthos along continental shelves
Figure 17. Behavior and physiology responses of marine organisms to various oxygen saturation levels.
Figure 18. Projected effects of 27.3 inches (0.69 meters) sea level rise on coastal habitats in Willapa Bay, WA by 2100 (A1B scenario)
Figure 19. Projected effects of 27.3 inches (0.69 meters) sea level rise on coastal habitats in the Lower Columbia River (WA and OR) by 2100 (A1B scenario)
Figure 20. Marine Species Shifting Northward

Figure 21. Change in maximum catch potential (10-year average) from 2005 to 2055 in each 30' x 30' cell under climate change scenarios
Figure 22. Distribution of non-native Spartina species on the Pacific Coast of North America
Figure 23. Two blades of Zostera japonica (Japanese eelgrass) are pictured with one blade of Z. marina (common eelgrass)
Figure 24. Compilation of confirmed New Zealand mudsnail sighting reports in the United States and Canada from 1987 through 2011, updated daily
Figure 25. The 67 ocean birds assessed have medium to high vulnerability to climate change; 43 are at the highest level
Figure 26. The great majority of coastal species (74 of 84 assessed) have medium or high vulnerability to climate change
Figure 27. Climate change effects on the salmon life cycle
Figure 28. SRES Scenarios

TABLES

Table 1. Annual and seasonal temperature trends for Juneau, AK over two thirty-year time periods 12
Table 2. Trends in the average daily minimum, mean, and maximum temperatures per decade in °F (°C)in southern coastal British Columbia, 1950-2006
Table 3. Regional-scale maximum and minimum temperature trends during 1916-2003 and 1947-2003 forthe cool season (October-March) and warm season (April-September) in the Pacific Northwest
Table 4. Projected multi-model average temperature increases, relative to the 1970-1999 mean
Table 5. Annual and seasonal precipitation and date of freeze trends for Juneau, AK over two thirty-year time periods. 22
Table 6. Historical trends precipitation in 30-, 50-, and 100-year periods, calculated from mean daily values as seasonal and annual averages
Table 7. Absolute and relative changes in pH, carbonate ion, and aragonite(Ω_{arag}) and calcite (Ω_{calc}) saturation states for three CO ₂ levels (2005, and 2X and 3X pre-industrial* levels) in the North Pacific and Subpolar Pacific Oceans
Table 8. Linear decadal trends in SST in the Northern Hemisphere and Globally
Table 9. Mean annual sea surface temperature at nine stations on the B.C. coast
Table 10. Contribution to sea level rise by thermal expansion (steric effects) and melting glaciers and ice caps (eustatic effects) over several time periods
Table 11. SLR Trends in Southeast Alaska, 1919-2008 66
Table 12. SLR Trends in British Columbia, 1909-2006 67
Table 13. SLR Trends in Washington
Table 14. SLR Trends in Oregon 70

Table 15. SLR Trends in Northern California	70
Table 16. Global Average Sea level Rise 1961-2100	75
Table 17. Relative SLR by 2100 for Selected B.C. Locations	76
Table 18. Synthesis of Pacific conditions during sardine and anchovy regimes	106
Table 19. Erosion area with a 4.6 ft (1.4 m) sea level rise, by county	118
Table 20. Changes to the Area of Four Coastal Habitats in Washington & Oregon	128
Table 21. Nearshore marine and estuarine habitat use by salmonid species in Pacific Northwest	162
Table 22. Key Steps for Assessing Vulnerability to Climate Change	183

BOXES

Box 1. Summary of observed trends and future projections for greenhouse gas concentrations, temperature, and precipitation
Box 2. The Special Report on Emissions Scenarios (SRES)
Box 3. Why are CO ₂ concentrations, air temperature, and precipitation important?9
Box 4. Trends and projections for extreme precipitation in the NPLCC region
Box 5. Summary of observed trends and future projections in ocean acidification
Box 6. Summary of observed trends and future projections for sea surface temperature
Box 7. The role of the Pacific Decadal Oscillation (PDO) and El Nino Southern Oscillation (ENSO) in regional climate
Box 8. Summary of observed trends and future projections for ocean currents
Box 9. Summary of observed trends and future projections for storm frequency and severity
Box 10. Summary of observed trends and future projections for sea level rise
Box 11. Synergistic impacts of SLR, erosion, and flooding increase vulnerability to extreme events in the Fraser River Delta and Queen Charlotte Islands, British Columbia
Box 12. The effects of tectonic activity on the vertical reference system and sea level rise measurements in Washington, Oregon, and California
Box 13. Summary of observed trends and future projections for coastal upwelling
Box 14. Summary of observed trends and future projections for coastal hypoxia and anoxia
Box 15. Impacts of hypoxia on the structure, function, and processes of biological communities in the marine environment
Box 16. SLAMM: Alternatives & Limitations
Box 17. Indigenous science, and traditional and local ecological knowledge
Box 18. Managing uncertainty: Scenario-based planning and adaptive management

CASE STUDIES

Case Study 1. Ecosystem-Based Management and Climate Change Adaptation in Humboldt Bay, CA. 18	9
Case Study 2. Planning for Sea level Rise in Olympia, WA	2
Case Study 3. Federal, Tribal, and non-profit partners restore and study the Nisqually Delta (WA) to promote the recovery and resiliency of a treasured ecosystem in light of climate change and other	
stressors	6
Case Study 4. Responding to Changes in Seawater Chemistry: The Oyster Emergency Project, WA 20	9

AOGCM Atmosphere-Ocean General Circulation Model 4th Assessment Report (produced by IPCC) AR4 BC Province of British Columbia, Canada CA State of California, United States CCE California Current Ecosystem CIG Climate Impacts Group CO_2 Carbon Dioxide **ENSO** El Niño-Southern Oscillation Environmental Protection Agency, United States **EPA** GCM Global Circulation Model Greenhouse Gas GHG IPCC Intergovernmental Panel on Climate Change LCC Landscape Conservation Cooperative LEK Local Ecological Knowledge LME Large Marine Ecosystem Ministry of Environment, British Columbia MoE NASA National Aeronautics and Space Administration, United States NOAA National Oceanic and Atmospheric Administration, United States NPLCC North Pacific Landscape Conservation Cooperative O_2 Oxygen OCAR Oregon Climate Assessment Report (produced by OCCRI) **OCCRI** Oregon Climate Change Research Institute OMZ Oxygen Minimum Zone OR State of Oregon, United States PCIC Pacific Climate Impacts Consortium Pacific Decadal Oscillation PDO **PNW** Pacific Northwest Sea Level Rise SLR SRES Special Report on Emissions Scenarios SST Sea Surface Temperature TEK Traditional Ecological Knowledge WA State of Washington, United States

List of frequently used acronyms and abbreviations

WACCIA Washington Climate Change Impacts Assessment (produced by CIG)

PREFACE

This report is intended as a reference document – a science summary – for the U.S. Fish and Wildlife Service (FWS) Region 1 Science Applications Program. The report compiles findings on climate change impacts and adaptation approaches in marine and coastal ecosystems within the North Pacific Landscape Conservation Cooperative area (NPLCC). The report is intended to make scientific information on climate change impacts within the NPLCC region accessible and useful for natural resources managers and others. It is produced by National Wildlife Federation under a grant from the U.S. FWS (FWS Agreement Number 10170AG200).

This report is a complete "Draft Final" version and represents the fulfillment of Phase One of a two phase project. Under Phase Two, funded through a separate grant, NWF will convene expert focus groups and produce a final report in 2012 that incorporates additional information. A companion report compiling similar information on freshwater aquatic and riparian ecosystems within the NPLCC area will also be completed under the same timeline.

Production and Methodology

This report draws from peer-reviewed studies, government reports, and publications from nongovernmental organizations to summarize climate change and ecological literature on historical baselines, observed trends, future projections, policy and management options, knowledge gaps, and the implications of climate change for species, habitats, and ecosystems in the marine and coastal environment. Because the report strives to reflect the state of knowledge as represented in the literature, in most cases language is drawn directly from cited sources. By compiling and representing verbatim material from relevant studies rather than attempting to paraphrase or interpret information from these sources, the authors sought to reduce inaccuracies and possible mis-characterizations by presenting data and findings in their original form. The content herein does not, therefore, necessarily reflect the views of National Wildlife Federation or the sponsors of this report. Given the extensive use of verbatim material, in order to improve readability while providing appropriate source attributions, we indicate those passages that reflect verbatim, or near verbatim, material through use of an asterisk (*) as part of the citation footnote. In general, verbatim material is found in the main body of the report, while the Executive Summary, Boxes, and Case Studies reflect the report authors' synthesis of multiple sources.

To produce this report, the authors worked with the University of Washington Climate Impacts Group (CIG) and reviewers from federal, state, tribal, non-governmental, and university sectors. CIG provided expert scientific review throughout the production process, as well as assistance in the design and organization of the report. Reviewers provided access to local data and publications, verified the accuracy of content, and helped ensure the report is organized in a way that is relevant and useful for management needs. In addition, we engaged early with stakeholders throughout the NPLCC region for assistance and input in the production of this report. More than 100 people provided input or review of this document.

Description of Synthesis Documents Utilized

This report draws from primary sources as well as synthesis reports. In synthesis reports, we accepted information as it was presented. Readers are encouraged to refer to the primary sources utilized in those synthesis reports for more information. In most cases, the page number is included for reference. In cases where a primary source is referenced in a secondary source, it is indicated in the footnote. The global, regional, state, and provincial level synthesis reports drawn from include:

- Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4): Climate Change 2007.
- Global Climate Change Impacts in the United States. (2009).
- Alive and Inseparable: British Columbia's Coastal Environment (2006).
- Environmental Trends in British Columbia: 2007.
- Taking Nature's Pulse: The Status of Biodiversity in British Columbia (2009).
- *Climatic Change*, Volume 102, Numbers 1-2 (September 2010). This volume published the findings of the Washington Climate Change Impacts Assessment (WACCIA).
- Washington Climate Change Impacts Assessment (WACCIA) (2009).
- Oregon Climate Assessment Report (OCAR) (2010).
- 2009 California Climate Adaptation Strategy: A Report to the Governor of the State of California in Response to Executive Order S-13-2008.
- Synthesis of Adaptation Options for Coastal Areas. (2009).
- The State of Marine and Coastal Adaptation in North America: A Synthesis of Emerging Ideas. (2011).
- Strategies for Managing the Effects of Climate Change on Wildlife and Ecosystems. (2008).

How to Use This Document

Being the first reference document of its kind for the North Pacific LCC region, the extensive details on climate change trends and projections are necessary to provide baseline information on the NPLCC. However, we encourage the reader to focus on the general magnitude and direction of projections, their implications, and on the range of options available to address climate change impacts. It is our hope that this document will provide useful information to North Pacific LCC members and stakeholders, and help facilitate effective conservation that accounts for climate change and its impacts in the region.

Acknowledgements

We thank our partner, the U.S. Fish and Wildlife Service, for funding and support throughout the production of this report, with special thanks to the Region 1 Science Applications Program.

We are grateful to our partner, the University of Washington Climate Impacts Group, for their expertise and insight, and for the many improvements that came through their guidance.

We are indebted to the 100+ individuals who gave generously of their time and knowledge to inform the development of this report. With the expertise of reviewers and interviewees, we were able to acquire and incorporate additional peer-reviewed reports and publications evaluating climate change impacts on relatively small geographic scales. This allowed us to add nuance to the general picture of climate change impacts throughout the NPLCC geography. Further, this report benefitted tremendously from the

resources, thoughtfulness, expertise, and suggestions of our 29 reviewers. Thank you for your time and effort throughout the review process. Reviewers and people interviewed are listed in Appendix 6.

We also thank Ashley Quackenbush, Matt Stevenson, and Dan Uthman for GIS support.

Suggested Citation

Tillmann, Patricia. and Dan Siemann. *Climate Change Effects and Adaptation Approaches in Marine and Coastal Ecosystems of the North Pacific Landscape Conservation Cooperative Region: A Compilation of Scientific Literature. Phase 1 Draft Final Report.* National Wildlife Federation – Pacific Region, Seattle, WA. September 2011.