1. The x component of vector \mathbf{R} is $R_x = -22.2$ units and its y component is $R_y = 27.8$ units. What are its magnitude and direction? Give the direction as an angle measured counterclockwise from the $+x$ direction.

 - Magnitude: 35.6 units
 - Direction: 129° counterclockwise from the $+x$-axis

2. If an airplane travels 35.0° north of east for 187 km, how far east and how far north did it travel? In other words, what are the magnitudes of the east component and north component of the plane's displacement?

 - East component: 153 km
 - North component: 107 km

3. A cheetah is running at a speed of 18.9 m/s in a direction of 35° north of west. Find the components of the cheetah's velocity along the following directions.

 - (a) the velocity component due north: 10.8 m/s
 - (b) the velocity component due west: 15.5 m/s

4. Two position vectors lie in a plane. The first, vector \mathbf{R}_A, points at an angle of 20° below the positive x-axis and has a magnitude of 46.5 m. The second, vector \mathbf{R}_B, points at an angle of 51.5° above the positive x-axis and has a magnitude of 75 m.

 - (a) Choose the diagram below that is correct a graphical representation of $\mathbf{R}_A + \mathbf{R}_B$.
 - (b) What is the magnitude and direction of vector \mathbf{R}_C? Give the direction as an angle measured counterclockwise from the positive x-axis?

 - Magnitude: 100 m
 - Direction: 25° (counterclockwise from the $+x$-axis)
5. Question Details
A child walking in a field makes three consecutive displacements. The child first moves 5.00 m westward, then 10.5 m northward. Finally, the child moves back to starting point of the first displacement. What is the magnitude and direction of the child's third displacement? Give the direction as an angle south of east.

- **Magnitude**: 11.6 m
- **Direction**: 64.5° south of east

6. Question Details
The figure below shows four position vectors, \(\vec{A} \), \(\vec{B} \), \(\vec{C} \), and \(\vec{D} \). Their directions are given in the figure, and their magnitudes are the following:

- \(A = 9 \text{ m} \)
- \(B = 12 \text{ m} \)
- \(C = 6 \text{ m} \)
- \(D = 9 \text{ m} \)

If the vector \(\vec{R} = \vec{A} + \vec{B} + \vec{C} + \vec{D} \), what are the \(x \) and \(y \) components of \(\vec{R} \)?

- **\(R_x \)**: 12.0 m
- **\(R_y \)**: 13.4 m

7. Question Details
A seagull flying horizontally over the ocean at a constant speed of 3.10 m/s carries a small fish in its mouth. It accidentally lets go of the fish, and 2.30 s after letting go the fish lands in the ocean.

(a) Just before reaching the ocean, what is the horizontal component of the fish's velocity? Ignore air resistance. Assume the bird is initially traveling in the positive \(x \) direction. (Indicate the direction with the sign of your answer.)

- **3.1 m/s**

(b) Just before reaching the ocean, what is the vertical component of the fish's velocity? Ignore air resistance. Assume upward is the positive \(y \) direction and downward is the negative \(y \) direction. (Indicate the direction with the sign of your answer.)

- **-22.5 m/s**

(c) If the seagull's initial speed were increased, which of the following regarding the fish's velocity upon reaching the ocean would be true? (Select all that apply.)

- The horizontal component of the fish's velocity would increase.
- The horizontal component of the fish's velocity would decrease.
- The vertical component of the fish's velocity would stay the same.
- The vertical component of the fish's velocity would decrease.
- The vertical component of the fish's velocity would stay the same.

8. Question Details
An Olympic diver is on a diving platform 9.60 m above the water. To start her dive, she runs off of the platform with a speed of 1.25 m/s in the horizontal direction. What is the diver's speed just before she enters the water?

- **13.8 m/s**

9. Question Details
The acceleration due to gravity at the surface of a planet depends on the planet's mass and size; therefore other planets will have accelerations due to gravity different from 9.8 m/s². Imagine an astronaut stands on an alien planet, which has no atmosphere, and throws a rock with a speed of 6.85 m/s in the horizontal direction, releasing it at a height of 1.40 m above the surface of the planet. The rock hits the surface a horizontal distance of 9.20 m from the astronaut. Find the magnitude of the acceleration due to gravity on this alien planet.

- **1.55 m/s²**
10. Question Details

OSColPhys1 3.P.039.WA. [2439396]

Physical Constants

A baseball pitcher throws a ball horizontally at a speed of 42.2 m/s. A catcher is 18.4 m away from the pitcher. Find the magnitude of the vertical distance that the ball drops as it moves from the pitcher to the catcher. Ignore air resistance.

0.932 m

Supporting Materials

11. Question Details

OSColPhys1 3.P.042.WA. [2439433]

Physical Constants

A tennis player serves a tennis ball such that it is moving horizontally when it leaves the raquet. When the ball travels a horizontal distance of 11 m, it has dropped 47 cm from its original height when it left the raquet. What was the initial speed of the tennis ball? (Neglect air resistance.)

35.5 m/s

Supporting Materials

12. Question Details

OSColPhys1 3.4.046. [2153215]

A basketball player is running at 5.30 m/s directly toward the basket when he jumps into the air to dunk the ball. He maintains his horizontal velocity.

(a) What vertical velocity does he need to rise 0.600 meters above the floor?

3.43 m/s

(b) How far from the basket (measured in the horizontal direction) must he start his jump to reach his maximum height at the same time as he reaches the basket?

1.85 m

Supporting Materials

13. Question Details

OSColPhys1 3.P.037.WA. [2439394]

Physical Constants

A football is kicked from ground level with an initial velocity of 20.6 m/s at angle of 51.5° above the horizontal. How long is the football in the air before it hits the ground? Ignore air resistance.

3.29 s

Supporting Materials

14. Question Details

OSColPhys1 3.P.036.Tutorial.WA. [2440539]

Physical Constants

You are walking around your neighborhood and you see a child on top of a roof of a building kick a soccer ball. The soccer ball is kicked at 35° from the edge of the building with an initial velocity of 17 m/s and lands 59 meters away from the wall. How tall is the building that the child is standing on?

46.6 m

Supporting Materials

Assignment Details

Name (AID): Week 4 Problem Set (5337751)
Submissions Allowed: 5
Category: Homework
Locked: No
Author: Chowdary, Krishna (chowdark@evergreen.edu)
Last Saved: Jan 25, 2014 06:24 PM PST
Permission: Protected
Randomization: Person

Feedback Settings

Before due date: Question Score
Assignment Score
Publish Essay Scores
Question Part Score
Mark
Add Practice Button
Help/Hints
Response
Save Work
After due date: Question Score
Assignment Score
Publish Essay Scores
Key
Question Part Score
Solution
Mark
Add Practice Button
Help/Hints
Response