Week 6 Problem Set (5398482)

Question $\quad \begin{array}{llllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$

1. Question Details
(a) Express the following angles in radians.

(b) The following angles are in units of radians. Express them in degrees.
$\pi / 5=\square$

2. Question Details

A bicycle tire of radius 0.42 m has a piece of gum stuck on its rim. What is the angle through which the tire rotates when the gum has moved through a linear distance of 1.84 m ? Express your answer in radians and degrees.
$\square 4.38 \mathrm{rad}$ $2.351{ }^{\circ}{ }^{\circ}$
Supporing Materials
Physical Constants
3. Question Details

OSColPhys 1 ..P.002.WA. [2611697]
An automobile with 0.320 m radius tires travels $80,000 \mathrm{~km}$ before wearing them out. How many revolutions do the tires make, neglecting any backing up and any change in radius due to wear?
$\square 3.98 \mathrm{e}+07 \mathrm{rev}$
Supporing Materials
Physical Constants
4. Question Details

OSCoIPhys1 6.f.004.WA. [2611605]
A truck with 0.385 m radius tires travels at $44.5 \mathrm{~m} / \mathrm{s}$. At how many radians per second are the tires rotating?
$\square 116 \mathrm{rad} / \mathrm{s}$
What is this value in rpm?
1100 rpm
Supporing Materials
Physical Constants
5. Question Details
oscolphys 6 .f.007.WA. [2611557]
Mary and her younger brother Alex decide to ride the 17 -foot-diameter carousel at the State Fair. Mary sits on one of the Mary and her younger brother Alex decide to ride the 17 -foot-diameter carousel at the State Fair. Mary sits on one of the
horses in the outer section at a distance of 8 feet from the center. Alex decides to play it safe and chooses to sit in the inner horses in the outer section at a distance of 8 f
section at a distance of 5 feet from the center.
(a) What is Mary's angular speed ω_{M} compared to that of Alex's angular speed ω_{A} ? Give your answer as a multiple of ω_{A}. \qquad
(b) What is Mary's tangential speed v_{M} compared to that of Alex's tangential speed v_{A} ? Give your answer as a multiple of v_{A}.
$\mathrm{V}_{\mathrm{M}}=\square$
$\mathrm{Vm}=\square 1.6 \mathrm{v}_{\mathrm{A}}$
Supporing Materials
Physical Constants
6. Question Details

The length of the slope of a mountain is 2660 m , and it makes an angle of 13.7° with the horizontal. What is the height of the mountain, relative to its base?

\section*{| the mountain, relative t |
| :--- |
| \square |
| 630 m |}

Supporing Materials
Physical Constants
7. Question Details OsColPhys1 3.P.002.WA. [2439412] A cheetah is running at a speed of $20.4 \mathrm{~m} / \mathrm{s}$ in a direction of 43° north of west. Find the components of the cheetah's A cheetah is running at a speed of 20.4
velocity along the following directions.
(a) the velocity component due north
$\square 13.9 \mathrm{~m} / \mathrm{s}$
(b) the velocity component due west $14.9 \mathrm{~m} / \mathrm{s}$

Supporing Materials

Physical Constants

$$
\begin{aligned}
& \text { (b) } \quad \overrightarrow{\mathbf{D}}=2 \overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}} \\
& 56.6 \mathrm{~cm}
\end{aligned}
$$

Supporing Materials
Physical Constants
9. Question Details

While in a park, you walk west for 52 m , then you walk 32.1° north of west for 41 m , and finally you walk due north for 25 m . Find the components of your final displacement, from your initial to final point, along the north and west directions. (a) displacement component due north 246.8 m

```
(b) displacement component due west
```

 (b) displacement compon
 Physical Constants
10. Question Details

A new landowner has a triangular piece of flat land she wishes to fence. Starting at the west corner, she measures the first side to be 80 m long and the next to be $105 \mathrm{~m}-$ - these sides are represented as displacement vectors \mathbf{A} and \mathbf{B} in Figure 3.26 , where $\theta_{1}=23^{\circ}$, and $\theta_{2}=13^{\circ}$. She then correctly calculates the length and orientation of the third side \mathbf{C}. What is her result?

Figure 3.26.

Assignment Details

Name (AID): Week 6 Problem Set (5398482)
Submissions Allowed: 5
Category: Homework
Code:
Locked: No
Author: Chowdary, Krishna (chowdark@evergreen.edu) Last Saved: Feb 9, 2014 10:32 AM PST
Permission: Protected
Randomization: Person
Which graded: Last

Feedback Settings

Before due date
Question Score
Assignment Score
Publish Essay Scores
Mark
Mark
Help/hints
Response
Save Work
After due date
Ouestion Score
Question Score
Publish Essay Scores
Key
Question Part Score Solution
Mark
Add Practice Button
Help/Hints
Response

