Wd SE:I 'tI/II/t

6 fo $乙$

WAMAP Assessment

Wd SE:I 'tI/LI/t

$$
\begin{aligned}
& \text { Wd SE: I'tI/II/t } \\
& \begin{array}{c}
\text { Which of the following equations are equivalent to } a x^{2}+b x+c=0 \text { ? } \\
\square\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}} \\
\square x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
\square x^{2}+b x=-c \\
\square x=-\frac{b \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}}{\square\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{2 a}} \\
\square x^{2}+\frac{b}{a} x+\frac{c}{a}=0 \\
\square a x^{2}+b x=-c \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x^{2}+\frac{b}{a} x+\frac{c}{a}=0 \\
\left(x+\frac{b x}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}} \\
\square
\end{array} \\
& \text { \#6 Points possible: 1. Total attempts: } 2
\end{aligned}
$$

Wd Se: I 'tI/I/t

https://www.wamap.org/assessment/printtest.php

[^0]Wd se: I $\ddagger \mathrm{t} / \mathrm{II} / \mathrm{t}$

[^1] she had to drive 9 mph slower, thus the return trip took 2 hours longer. Which of the following
equations would be used to find the rate at which Alicia drove to the beach? Pick two. \#18 Points possible: 1 . Total attempts: 2

[^0]: https://www.wamap.org/assessment/printest.php

[^1]: $\square(v-9)(t-2)=70$
 $0 L=(\tau+7)(6+1) \square$ $\square(v-9)(t+2)=70$ $\square v t=70$
 $\square v t=(2)(70)$ $\square(v+9)(t-2)=70$

