\qquad

$$
\begin{aligned}
& v=\frac{\Delta x}{\Delta t} \quad \frac{\text { speed } 1 \pm \text { speed } 2}{1 \pm \frac{(\text { speed } 1)(\text { speed } 2)}{c^{2}}} \\
& \Delta t_{\text {proper }}=\Delta t_{2-c l o c k} \sqrt{1-(v / c)^{2}} \quad L_{\text {other }}=L_{\text {rest }} \sqrt{1-(v / c)^{2}} \\
& \vec{p}=\frac{m \vec{u}}{\sqrt{1-u^{2} / c^{2}}} \\
& E^{2}=(p c)^{2}+\left(m c^{2}\right)^{2} \\
& (\Delta S)^{2}=(c \Delta t)^{2}-\left[(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}\right] \\
& =(c \Delta t)^{2}-(\Delta x)^{2} \\
& (\Delta S)^{2}=\left(\Delta S^{\prime}\right)^{2} \\
& E=\frac{m c^{2}}{\sqrt{1-u^{2} / c^{2}}} \\
& \vec{u}=\frac{\vec{p} c^{2}}{E} \\
& K=E-m c^{2}
\end{aligned}
$$

1) In some reference frame, a particle is measured to have mass $15 \mathrm{MeV} / \mathrm{c}^{2}$ and total energy 25 MeV . Determine (in any order you wish) this particle's:
a) kinetic energy
b) momentum
c) speed
2) In some other reference frame, the same particle as in question 1) is measured to have total energy 39 MeV and speed $\frac{12}{13} c$.
a) Which of the following quantities also change in this other reference frame? (circle all that apply)

kinetic energy	mass	momentum	none of these change

b) Briefly explain your reasoning for your choice.
3) **note: this may be a challenging question. Do your best.**

Determine the relative speed of the two reference frames involved in questions 1) and 2).

